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Abstract

In this paper we employ an autoregressive GARCH-in-mean-level process with variable coe¢ cients
to forecast in�ation and investigate the behavior of its persistence in the United States. We propose
new measures of time varying persistence, which not only distinguish between changes in the dynamics
of in�ation and its volatility, but are also allow for feedback between the two variables. Since it is
clear from our analysis that predictability is closely interlinked with (�rst-order) persistence we coin
the term persistapredictability. Our empirical results suggest that the proposed model has good
forecasting properties.
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1 Introduction

The behavior of in�ation has long been an object of interest to economists, especially to central banks,

which are bounded by statutory mandate to maintain price stability. In the literature this debate can

be streamlined in two strands of empirical research, each drawing on di¤erent background. Namely the

problem of modelling in�ation persistence and the impact of in�ation uncertainty on in�ation levels.

Broadly speaking, in�ation persistence measures the speed at which the in�ation rate returns to its

equilibrium level after an in�ationary shock: the faster in�ation returns to its equilibrium level after

a macroeconomic shock, the more e¤ective monetary policy action can be, all else equal. As a result,

optimal monetary policy crucially depends on the knowledge of in�ation dynamics. For example, high

in�ation persistence may require a bolder monetary policy action to bring in�ation under control. On the

other side, a low level of in�ation persistence may require a weaker or no action by monetary authorities

in response to an exogenous shock. No wonder why the issue of modelling in�ation persistence has been

intensively investigated in empirical studies. In the literature, a large number of works make use of

autoregressive (AR) model-based measures such as the largest autoregressive root (LAR) and the sum

of the autoregressive coe¢ cients (SAR) to measure persistence. However, empirical studies are often

in considerable disagreement regarding the characteristic features of in�ation dynamics. For instance,

in his seminal paper Taylor (2000) found that in the United States the in�ation persistence during the

Volcker-Greenspan era was substantially lower than during the previous two decades. Similarly, Levin

and Piger (2004) showed that high in�ation persistence was not an inherent characteristic of industrial

economies over the period 1984-2002. On the other hand, the work based on the SAR approach by Batini

(2006) suggested relatively little evidence of shifts in in�ation persistence for the Euro area (see also

Pivetta and Reis, 2007; Stock, 2001, O�Reilly and Whelan, 2005; and Gerlach and Tillman, 2012).

Research economists have also placed a lot of emphasis on the relationship between in�ation and its

uncertainty.1 In his seminal paper Friedman (1977) argued that nominal uncertainty causes an adverse

output e¤ect. Friedman�s famous argument about the negative welfare e¤ects of in�ation consists of two

claims: higher in�ation increases nominal uncertainty, which then decreases output growth. Ball (1990)

took Fridman�s point further by developing a repeated game model in which (through the presence

of two types of policymakers with di¤erent preferences, who stochastically alternate in power) higher

in�ation generates higher nominal uncertainty. Causality in the opposite direction, namely from in�ation

uncertainty to in�ation, is instead suggested by the model proposed by Cukierman and Meltzer (1986),

in which there is an incentive for policymakers to create in�ation surprises to raise output growth. In

1Baker et al. (2016) o¤er a review of the literature on economic uncertainty on the overall macroeconomy. Interesting
works on the impact of uncertainty on the economic system include Bloom (2009), Bachman et al. (2013), Bloom et
al. (2014), and Scotti (2016). A closely related literature focuses explicitly on policy uncertainty. Early studies on the
detrimental economic e¤ects of monetary, �scal, and regulatory policy uncertainty include the work by the Rodrik (1991),
Higgs (1997), and Hassett and Metcalf (1999). More recently, Born and Pfeifer (2014) and Fernandez-Villaverde at al.
(2015) study policy uncertainty in DSGE models, �nding moderately negative e¤ects, while Pastor and Veronesi (2012)
model the theoretical links among �uctuations, policy uncertainty, and stock market volatility.
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particular, according to Cukierman and Meltzer (1986) in the presence of uncertainty about the rate

of monetary growth and, therefore, in�ation, policymakers apply an expansionary monetary policy in

order to surprise the agents and enjoy output gains. The argument that Central Banks tend to create

in�ation surprises in the presence of more in�ation uncertainty implies a positive causal e¤ect from

nominal uncertainty to in�ation.2 Empirical research has sought evidence of the causal relations between

in�ation and in�ation uncertainty by estimating GARCH-type models. One of the �rst papers to test

for the Cukierman and Meltzer hypothesis in a context of a GARCH in-mean model was Baillie et al.

(1996). More recent literature supports the view that in�ation uncertainty can be approximated by the

conditional variance of unanticipated shocks to in�ation.3

In the literature most of previous studies analyzing the Friedman hypothesis have focused on the

in�ation and in�ation uncertainty relationship (see for example Barnett et al., 2020 and the references

therein). However, despite the large number of empirical works there is still no consensus about either the

direction or sign of this relationship. For instance, using a GARCH-type model Fountas and Karanasos

(2007) �nd evidence of the positive e¤ect of in�ation on in�ation uncertainty; see also Evans (1991),

Holland (1995), Grier and Perry (1998), Fountas (2001), Apergis (2004), Kontonikas (2004), Daal et al.

(2005). On the other side, the empirical investigation in Chang (2012) supports the view that in�ation

has a negative impact on in�ation uncertainty during periods of high in�ation volatility, and �nd no

evidence of the impact of in�ation on in�ation uncertainty; see also Hwang (2001) and Wilson (2006).

Against this background, in this paper we try and reconcile two seemingly unrelated strands of

literature by showing that the issue of in�ation persistence and the in�ation-nominal uncertainty link

are closely related and should not be considered as separate matters. The paper builds on the work by

Conrad and Karanasos (2015a) where it is shown that in time series models with in-mean and level e¤ects

there is a transmission of memory from the conditional variance to the conditional mean and vice versa.

In particular, the authors consider the AR asymmetric power (AP) GARCH-in-mean-level (ML) model

(the GARCH-M model was introduced by Engle et al.,1987; see also Conrad et al., 2010; Conrad and

Karanasos, 2015b; and Karanasos and Zeng, 2013) and show that the model speci�cation has an ARMA

representation where the largest root of the AR part is closely linked not only to the in�ation intrinsic

persistence but to the persistence of the conditional variance of the process as well.

In the speci�c case of the in�ation series, if the AR-APARCH-ML model can be used to capture the

characteristic features of the process, then the in�ation uncertainty parameter (i.e. the in-mean parameter

in the conditional mean equation), induces a transmission of memory from the conditional variance to the

conditional mean, that in turn a¤ects the persistence properties of the level process. If this is the case,

the result put and end to a long standing debate on the direction of causality of the in�ation-nominal

uncertainty relation showing that the two are closely related, therefore a shock to in�ation uncertainty

2 In the literature a positive relationship between in�ation uncertainty and in�ation has been supported by many studies,
such as Apergis (2004), Wilson (2006) and Berument et al. (2009).

3See for example Grier et al. (2004), Fountas et al. (2006), Fountas and Karanasos, (2007), Chang et al. (2010), and
Conrad and Karanasos (2015a,b)
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a¤ects the in�ation inertia and vice versa. Some questions are however still open. For example, what

are the implications for the predictability of in�ation? In other words, how the forecasting properties

of in�ation would be a¤ected by a shock to in�ation uncertainty? Furthermore, in�ation forecasts play

an important role, since (i) policymakers react to forecasts due to in�ation targeting adopted in most

high income countries (see Clarida et al., 2000); and (ii) economic actors use in�ation forecasts to decide

upon future savings and expenditure levels. In this respect a possible shortcoming of the speci�cation

in Conrad and Karanasos (2015a) is that the model does not allow for structural breaks in in�ation

dynamics. Recent studies have shown that ignoring the presence of structural breaks can have important

e¤ects on the precision of in�ation forecasting (see for example Evans and Wachtel, 1993; Berument et

al. 2005, Caporale and Kontonikas, 2009; and Caporale et al. 2010). Accordingly, in this paper we build

on Conrad and Karanasos (2015a) and consider a model where the conditional variance a¤ects positively

the conditional mean (in support of the Cukierman and Meltzer hypothesis) and the level has a positive

impact on the conditional variance (in line with Friedman hypothesis), but the parameters of the model

are allowed to change over time.

The contribution of this paper is twofold. First, we propose an AR-APGARCH-ML model with time

varying coe¢ cients that can be used to forecast in�ation. Research over the past decade has documented

considerable instability in in�ation forecasting models.4 However, most of this literature has focused

on describing the evolution of macroeconomic dynamics. Empirical works that focus on the issue of

modelling in�ation rarely investigate the forecasting properties of the suggested model speci�cations. In

general, studies that consider the forecasting ability of these models have been limited in both number

and scope. In this respect, this work builds on the related literature by providing an extensive forecasting

exercise comparing the suggested model to a number of speci�cations often used in empirical studies.

It will be clear from our analysis that predictability (forecasting) is closely interlinked with (�rst-order)

persistence. Therefore we coin the term persistapredictability. In other words, higher persistence implies

predictors with persistent structure. In particular, using the estimation results of the aforementioned

model we compute various measures of �rst (and second)-order time varying persistence. Our work is

close to Pivetta and Reis (2007) in spirit, however in this paper we depart from their study in an important

way, that is we contribute to the measurement over time of in�ation persistence by taking a di¤erent

approach to the problem and estimating a model of in�ation dynamics grounded in economic (rather than

statistical) theory. In particular, we compute measures of persistence that not only distinguish between

changes in the dynamics of in�ation and its volatility (and their persistence), but also allow for feedback

from volatility (in�ation uncertainty) to the level of the process (in�ation). Most importantly, there is

a straightforward connection between persistence and predictability. One of the conditional measures

of persistence is derived from the deterministic part of the optimal forecast, while another conditional

criterion is retrieved from the forecast errors.
4See for example Stock and Watson (2007) or Stock and Watson (2009) for an excellent survey on the related literature.
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In the related literature the issue of measuring persistence has been heavily investigated since the

response to shocks of the economic system on in�ation depends on the degree of persistence. Furthermore,

the horizon of monetary policy actions should be targeted according to the persistence of in�ation.

However, the results of empirical works that document changes over time of in�ation persistence in the

United States are not conclusive. For example, Cogley and Sargent (2001, 2005) use a Bayesian state-

space VAR model to model in�ation dynamics and conclude that there was a change in the underlying

characteristics of in�ation re�ecting a change in the structural characteristics of the economy and, possibly,

a more active in�ation targeting policy. In sharp contrast, Stock (2001) estimates the LAR using a rolling

window estimation method and concludes that there is no indication of a marked decline in the persistence.

A similar result is found in Pivetta and Reis (2007), where the LAR and the SAR are estimated using

both Bayesian and rolling window estimation methods. The authors conclude that in�ation persistence

has been high in the United States and approximately unchanged over the entire post-war period. In this

study, we argue that since time varying conditional volatility seems to be a characteristic feature of the

in�ation process in the United States (see for example Sensier and van Dijk, 2004) any suggested measure

of in�ation persistence should take into account the statistical properties of the conditional variance as

well. In general, we believe that although the issue of in�ation persistence has been heavily investigated

over the last decade questions such as whether persistence has changed over time or remained constant,

or whether it is structural or may vary according to speci�c monetary policy regimes are still open. The

suggested measure of persistence might shed some light on these important issues.

The empirical results reveal several insights on the dynamics of in�ation rate in the United States.

First, we �nd evidence that the parameters in the models capturing in�ation persistence change over

time, in the conditional mean and/or the conditional variance. Therefore, not allowing for time varying

coe¢ cients in the estimation procedure would result in a less accurate modelling of the in�ation process.

Second, when it comes to forecasting, accounting for time varying parameters in the conditional mean

equation improves the forecasting performance of the model. In general, comparing linear and nonlinear

model speci�cations, we �nd that models that allows for time varying in-mean and level parameters have

better forecasting performance than models that only allow for changes in the in�ation autoregressive

parameters. Third, using measures of persistence that only make use of autoregressive-type models to

draw inference on the level persistence from the analysis of the estimated autoregressive coe¢ cients may

blur the picture of in�ation dynamics since the implication of the suggested model is that higher level of

uncertainty increases in�ation persistence which in turn a¤ects the forecasting properties of the process.

The outline of the paper is as follows. Section 2 introduces the time varying AR-APGARCH-ML

model and presents its bivariate ARMA representation. In Section 3 we derive the �rst moment structure

which is needed to obtain a new time varying measure of �rst-order persistence. Section 4 presents the

estimation results along with the forecasting exercise for in�ation series in the US. Section 5 compares the

forecasting results of our model to other alternative linear and nonlinear model speci�cations. Section 6
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presents the empirical results on the time varying persistence. Finally, Section 7 presents some concluding

remarks.

2 The Model

In this section, we consider an AR(1)-APGARCH(1; 1)-ML model, that is, a model in which there is

bidirectional feedback between the conditional mean and variance, and two deterministic abrupt breaks

(hereafter, DAB-AR(1; 2)-ML model). In particular, we will examine the case of two breaks (N = 2)

which occur at times t� k1 and t� k2 (with k2 > k1, k1 2 Z>0 (the set of positive integers)); of course

when k2 = k1 we have the case of one break), where the switch from one set of parameters to another is

abrupt.

Let fytg, t 2 Z, be the in�ation process, which follows a DAB-AR-M(1; 2)-ML model:

yt = '(t) + �(t)yt�1 + &(t)�
�
t + "t; (1)

where "t = et�t, and the vector of the three deterministically varying coe¢ cients, m(�)0 = ('(�); �(�);

&(�)) is given by

m(�)0 =

8<: ('1; �1; &1)
('2; �2; &2)
('3; �3; &3)

if � > t� k1;
if t� k2 < � � t� k1;
if � � t� k2;

with 'n, �n, &n 2 R (the set of real numbers), n = 1; 2; 3, � 2 R>0 (the set of positive real numbers),

fetg is a sequence of independent and identically distributed (i.i.d) random variables with zero mean and

variance, E(e2t ), and �2t is the conditional variance of yt. 5 According to eq. (1) the breaks occur at times

t � k1 and t � k2 and the switch from one set of parameters to another is abrupt. The time dependent

autoregressive coe¢ cient �(t) naturally measures the intrinsic persistence in the level of yt. By including

��t in the conditional mean we allow for feedback from the power transformed conditional variance of

yt to its level, captured by the deterministically varying in-mean coe¢ cient &(t). We denote the size of

the breaks by ��n = �n � �n�1 and �&n = &n � &n�1, for n = 2; 3. For example, �2 = �3 ���3 and

�1 = �3 ���3� ��2.

The power transformed conditional variance, ��t , is positive with probability one and is a measurable

function of Ft�1, which in turn is the sigma-algebra generated by fyt�1; yt�2; : : :g. We assume that ��t is

speci�ed as a time varying APGARCH-L(1; 1) process:

��t = !(t) + �(t)f("t�1) + �(t)�
�
t�1 + d(t)yt�1; (2)

with

f("t�1) = (j"t�1j � 
(t)"t�1)�;
5Within the class of ARMA processes this speci�cation is quite general and allows for intercept and slope shifts (see also

Pesaran and Timmermann, 2005, Pesaran et al., 2006, and Koop and Potter, 2007).
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where j
(t)j < 1 for all t (for the APGARCH model with time invariant parameters see, for example, Ding

et al., 1993, and Karanasos and Kim, 2006). The following conditions are necessary and su¢ cient for

��t > 0, for all t: !(t) > 0, �(t); �(t); d(t) � 0, and yt � 0, for all t. The vector of the �ve deterministically

varying coe¢ cients, v(�)0 = (!(�); �(�); 
(�); �(�); d(�)) is given by

v(�)0 =

8<: (!1; �1; 
1; �1; d1)
(!2; �2; 
2; �2; d2)
(!3; �3; 
3; �3; d3)

if � > t� k1;
if t� k2 < � � t� k1;
if � � t� k2;

with !n; �n; �n; dn 2 R�0 (the set of nonnegative real numbers), j
nj < 1; n = 1; 2; 3.

The model in eqs. (1) and (2) can be estimated by Quasi-Maximum Likelihood Estimation (QMLE)

method. The asymptotic consistency of the QML estimator for the parametric GARCH-M model is

established in Conrad and Mammen (2016).

Next we will introduce some important notation.

Notation 1 i)We denote the time invariant r-th moment, r 2 Z>0 (the set of positive integers) of the

power transformed variance by �rt = E(��rt ).

ii) Similarly, �r(t) denotes the r-th moment of f(et): �r(t) = E[[f(et)]r].

Clearly for � � 1, �2=�;t = E(�2t ) is not a fractional moment only if � is equal to 1 or 2. In all other

cases �2=�;t has to be calculated numerically. However, if � > 2, the existence of the �rst moment, �1t

guarantees that of �2=�;t. Similarly, �1+1=�;t = E(�
�+1
t ) is not a fractional moment only if � = 1=� where

� 2 Z>0. In all other cases �1+1=�;t has to be calculated numerically.

The APGARCH-L(1; 1) formulation in eq.(2) can readily be interpreted as having a weak time varying

ARMA(1; 1) representation for the conditional variance:

��t = !(t) + c(t)�
�
t�1 + �(t)vt�1 + d(t)yt�1; (3)

where

c(t) = �(t)�1(t) + �(t); and vt = f("t)� E[f("t) jFt�1 ] = f("t)� �1(t)��t ;

and vt is, by construction, an uncorrelated term with expected value 0. While the "t are the innovations

to the level of yt, the vt can be considered the �innovations�to the power transformed conditional variance

of yt.

By including the lagged yt in the conditional variance equation (the so-called level e¤ect) and ��t in

the mean equation (the so-called in-mean e¤ect), we allow for simultaneous feedback between the two

variables.6 Note that the parameter c(t) measures the intrinsic memory or persistence in the conditional

variance (see also Conrad and Karanasos, 2015a).
6Note that eq. (3) allows us to test for the Friedman hypothesis. Chang (2012), instead of a level e¤ect considers an

asymmetric GARCH speci�cation for the conditional variance.
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Next we will de�ne the covariance matrix of the two �shocks�"t and vt, �t= E("t"0t), where "t = ("t

vt)
0 and E(�) denotes the elementwise expectation operator. First, we will denote the variances of the

two �shocks�and their covariance by

�"t = E("2t ); �vt = E(v
2
t ); �"v;t = E("tvt).

The covariance matrix �t is given by

�t =

�
�"t �"v;t
�"v;t �vt

�
=

�
�2=�;tE(e2t ) �1+1=�;te�(t)
�1+1=�;te�(t) �2t�(t)

�
; (4)

where

�(t) = �2(t)� �21(t); e�(t) = E[etf(et)].
In the following corollary we present expressions for �r(t) and e�(t) under the assumption of Normality
(see also Karanasos and Kim, 2006).

Corollary 1 Consider the case where the term et is standard normal. Then E(e2t ) = 1, and �r(t), e�(t)
are given by

�r(t) =
1p
�

�
(1� 
(t))r� + (1 + 
(t))r�

�
2(

r�
2 �1)�

�
r� + 1

2

�
;

e�(t) = 1p
2�

�
[1� 
(t)]� � [1 + 
(t)

��
]2(�=2)�

�
�

2
+ 1

�
;

where � (�) is the Gamma function.

When � = 1 the above expressions reduce to e�(t) = �
(t), �1(t) = q 2
� , for all t, �2(t) = 1 + 


2(t) and

therefore �(t) = �2(t)� �21(t) = 1 + 
2(t)� 2
� , which implies that �t becomes

�t = �2t

�
1 �
(t)

�
(t) 1 + 
2(t)� 2
�

�
: (5)

Having de�ned the deterministically varying extension of the AR-APGARCH-ML model, next we will

present its bivariate vector autoregressive moving average (BVARMA) formulation.

VARMA Formulation

To obtain the optimal predictors and the variance of yt for the DAB-AR-ML model in eqs. (1) and (2)

in the next proposition we will express eqs. (1) and (3) in a matrix form (the proof is straightforward).

Proposition 1 eqs. (1) and (3) can be expressed in a matrix form as

y� = '(�) +�(�)y��1 + J"� + Z(�)"��1; (6)

with � 2 Z, y� = (y� ��� )0, J =
�
1 0
0 0

�
, where the three time varying coe¢ cient matrices, '(�), �(�),

and Z(�) are time invariant in each of the three segments:

'n =

�
'n + &n!n

!n

�
;�n =

�
�n + &ndn &ncn

dn cn

�
;Zn =

�
0 &n�n
0 �n

�
;

8<: n = 1
n = 2
n = 3

if � > t� k1;
if t� k2 < � � t� k1;
if � � t� k2:
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For notational convenience we will interchangeably use �3 or � and Z3 or Z. We will term the

deterministically varying bivariate expression in eq. (6) the DAB-BVARMA(1; 1; 2) representation.7

In what follows we will employ the above representation to derive explicit formulas for the optimal

predictors (and the variances) of yt and ��t in eqs. (1) and (2), respectively.
8 These are needed in order

to obtain time varying �rst and second-order measures of persistence.

3 Persistapredictability

3.1 Optimal Forecasts

In this section we provide an equivalent explicit solution representation of the DAB-BVARMA(1; 1; 2)

process in eq. (6), which generates explicit formulas for the optimal predictors and the bidimensional

time varying covariance matrix of fy�g, � = t+ r, r 2 Z�0 (the set of nonnegative integers).

First, let �max(X) denote the modulus of the largest eigenvalue of X. The following theorem holds

(the proof is presented in the Appendix 1).

Theorem 1 An equivalent explicit solution representation of the bivariate system in eq. (6), subject to

the initial condition y��k, for k � k2 + r, is given by

y�;k = E(y� jF��k ) + FE(y� jF��k ); (7)

where

E(y� jF��k ) = 'k(�) +�k1+r1 �k2�k12 �k�k2�1(�y��k + Z"��k); (8)

FE(y� jF��k ) = J"�+
k1+rX
`=1

�`�11 (�1J+ Z1)"��` +�
k1+r
1 f

k2�k1X
`=1

�`�12 (�2J+ Z2)"t�k1�`

+�k2�k12 [

k�k2�1X
`=1

�`�1(�J+ Z)"t�k2�`]g; (9)

and if �max(�n) 6= 1, n = 1; 2; 3, then

'k(�) = (I��k1+r1 )(I��1)�1'1+�k1+r1 [(I��k2�k12 )(I��2)�1'2+�k2�k12 (I��(k�k2))(I��)�1']:

(10)

In the above expression if �max(�n) = 1, then (I��kn�kn�1n )(I��n)�1, with k0 = �r and k3 = k,

should be replaced by
Pkn�kn�1�1

`=0 �`n (a similar argument holds for any of the analogous cases that

follow).

7As pointed out by Conrad and Karanasos (2015a) the AR(1)-APGARCH(1; 1)-M model with constant coe¢ cients is
observationally equivalent to an ARMA(2; 1) process with the largest autoregressive root close to one if � is close to one or
c is close to one (or both). Clearly, if � = 0, c = 1 and there are no breaks the reduced form representation of the AR-M
speci�cation coincides with the IMA(1; 1) model proposed by Stock and Watson (2007).

8Notice that, as pointed ouy by Pivetta and Reis (2007), including other variables would lead to an assessment of
predictability. Since here we focus on persistence and predictability (the two are interlinked), we work with a univariate
GARCH-ML model.
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The above theorem expresses the explicit solution representation, y�;k, in terms of the (k + r)-step

ahead optimal in (L2 sense) linear predictor, E(y� jF��k ), and the associated forecast error, FE(y� jF��k ).

Clearly, if k2 = k1 eq. (7) gives the solution in the case of one break, whereas if k2 = k1 = k, it gives

the general solution when there is no time variation. For example, for the time invariant case, since

�1 = �2 = � and Z1 = Z2 = Z, the forecast error in eq. (7) reduces to

FE(y� jF��k ) = J"�+
k+r�1X
`=1

�`�1(�J+ Z)"��`. (11)

Accordingly the general solutions when k � k1+ r and k1+ r < k < k2+ r can be obtained along the

lines of Theorem 1 and are equivalent to the time invariant case and the case when there is one break,

respectively.

In this section, in the context of the AR-APGARCH-ML model, we show the importance of taking

into account abrupt breaks for the in-sample forecasting. Having found an explicit formula for the general

solution of the DAB-BVARMA(1; 1; 2) representation, in the next section we will show how these results

can be used to derive the �rst moment structure.

3.2 First Moment Structure

In the sequel we will use the notation

E(y� ) = lim
k!1

E(y� jF��k );

FE(y� ) = lim
k!1

FE(y� jF��k );

'(�) = lim
k!1

'k(�):

Assumption 1 (First-Order). We assume that �max(�n) < 1, n = 1; 3:

Proposition 2 Let Assumption 1 hold. The expected value of the bivariate system in eq. (6), E(y� ), is

equal to '(�), which is given by

'(�) = (I��k1+r1 )(I��1)�1'1 +�k1+r1 [(I��k2�k12 )(I��2)�1'2 +�k2�k12 (I��)�1']: (12)

Notice that when r ! 1, the expected value (under Assumption 1) is equivalent to the one for the

invariant case: '(�) = (I��1)�1'1. Similarly, FE(y� ) is given by

FE(y� ) = J"�+

k1+rX
`=1

�`�11 (�1J+ Z1)"��` +�
k1+r
1 f

k2�k1X
`=1

�`�12 (�2J+ Z2)"t�k1�`

+�k2�k12 [
1X
`=1

�`�1(�J+ Z)"t�k2�`]g:
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Proposition 3 Let Assumption 1 hold. The Wold-Cramér representation of the bivariate system in eq.

(6), y� = limk!1 y�;k, is given by

y� = '(�) + FE(y� ): (13)

The solution of eq. (6) in eq. (13) is decomposed in two orthogonal parts, a deterministic part which

is the unconditional mean, and a zero random part, that is the limit of the forecast errors.

In the next section we will show how the results on predictability and the �rst moment structure can

be used to derive a time varying �rst-order measure of persistence. In the Appendix 1 we will derive an

explicit formula for the bidimensional time varying covariance matrix of fytg, which, as noted above, is

needed in order to obtain a time varying measure of second-order persistence (see the Appendix 3 and

4).

3.3 Time Varying Persistence

The most often applied time invariant measures of �rst-order (or mean) persistence are the LAR (largest

AR root), and the SAR (sum of the AR coe¢ cients). As pointed out by Pivetta and Reis (2007) in

relation to the issue of recidivism by monetary policy its occurrence depends very much on the model

used to test the natural rate hypothesis, i.e., the hypothesis that the SAR or the LAR for in�ation data

is equal to one. Obviously, both measures would ignore the presence of breaks, in-mean and possible

level e¤ects and, hence, potentially under or over estimate the persistence in the levels, which is partly

induced by its biderictenional feedback with the persistence in the conditional variance.

The LAR has been used to measure persistence in the context of testing for the presence of unit

roots (see, for details, Pivetta and Reis, 2007). The authors �nd no evidence pointing to a rejection of a

unit root in in�ation. However, as we show in Canepa et al. (2019) if the in-mean mechanism together

with the possible presence of breaks in the in-mean parameter are ignored, then conventional procedures

(such as unit root tests) for estimating the persistence in the mean may lead to biased estimates. In

particular, they might falsely indicate a unit root, and, hence, suggest the modeling of the di¤erenced

series rather than their levels. Fiorentini and Sentana (1998) argue that any reasonable measure of shock

persistence should be based on the IRFs (impulse response functions). Therefore we will consider two

more alternative measures of �rst-order persistence (four in total):

� 1st. LAR

� 2nd. 1/(1-SAR)

� 3rd. The unconditional mean

� 4th. The sum of the MA coe¢ cients in the Wold representation

It will be clear from the following analysis that predictability (forecasting) is closely interlinked with

(�rst-order) persistence. Therefore as mentioned above we coin the term persistapredictability. In other
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words, higher �rst-order persistence implies predictors with persistent structure.

Below we will show how the four aforementioned measures of �rst-order in�ation persistence for the

time invariant univariate case (the model without in-mean and level e¤ects and breaks) should be modi�ed

in order to become applicable to the general time varying bivariate case.

Next we will use the notation j = (1 1)0. Setting '1 = '2 = ' = j in eq. (10), that is assuming unit

mean and volatility (BVARMA) drifts, we obtain the vector P(AR)�;k j, where P(AR)�;k is given by

P
(AR)
�;k = (I��k1+r1 )(I��1)�1+�k1+r1 [(I��k2�k12 )(I��2)�1+�k2�k12 (I��(k�k2))(I��)�1]: (14)

The limit of P(AR)�;k as k !1, denoted hereafter by P(AR)� , under Assumption 1, is given by

P(AR)� = P
(AR)
�;k +�k1+r1 �k2�k12 �(k�k2)(I��)�1: (15)

Notation 2 i) We will denote the two elements in the �rst row of P(AR)�;k in eq. (14) by P (AR)k (y� j" )

and P (AR)k (y� jv ), and their sum by P (AR)k (y� ).

ii) The limits of P (AR)k (y� j" ) and P (AR)k (y� jv ) as k ! 1, that is the two elements in the �rst row

of P(AR)� in eq. (15), will be denoted by P (AR)(y� j" ) and P (AR)(y� jv ), respectively, and their sum by

P (AR)(y� ).

Setting "� = j for all � in eq. (9), that is assuming unit mean and volatility shocks, we obtain the

vector P(MA)
�;k j, where P(MA)

�;k is given by

P
(MA)
�;k = J+(I��k1+r1 )(I��1)�1(�1J+ Z1) +�k1+r1 [(I��k2�k12 )(I��2)�1(�2J+ Z2)

+�k2�k12 (I��(k�k2�1))(I��)�1(�J+ Z)]: (16)

Notice that if in the above equation we set J = I and Z1 = Z2 = Z = 0, that is removing the appearance

in the mean of the moving average term (present due to the in-mean e¤ects), then it can be shown, using

straightforward matrix algebra, that P(MA)
�;k reduces to P(AR)�;k . The limit of P(MA)

�;k as k ! 1, denoted

hereafter by P(MA)
� , under Assumption 1, is given by

P(MA)
� = P

(MA)
�;k +�k1+r1 �k2�k12 �(k�k2�1)(I��)�1(�J+ Z): (17)

Notation 3 i) We will denote the two elements in the �rst row of P(MA)
�;k in eq. (16) by P (MA)

k (y� j" )

and P (MA)
k (y� jv ), and their sum by P (AR)k (y� )

ii) The limits of P (MA)
k (y� j" ) and P (MA)

k (y� jv ) as k ! 1, that is the two elements in the �rst row

of P(MA)
� in eq. (17), will be denoted by P (MA)(y� j" ) and P (MA)(y� jv ), respectively, and their sum by

P (MA)(y� ):

The time varying versions of the four �rst-order (or mean) persistence measures that are able to take

into account the presence of breaks and to distinguish between the e¤ects of a mean shock and a volatility

shock on the level and conditional variance, respectively, are as follows:
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� 1st. max (�max(�); �max(�1))

(the equivalent of the LAR where �max(�) has been de�ned in Section 3.1)

� 2nd. P (AR)(y� )

(the corresponding of the 1/1-SAR, see eq. (15) and Notation 2(ii))

� 3rd. E(yt)

(the unconditional mean, that is the �rst element of '(�) in eq. (12))

� 4th. P (MA)(y� )

(the analogous to the sum of the Green functions9 , which is retrieved from the sum of the Green

Matrices (SGM) in eq. (17), see also Notation 3(ii))

The �rst measure is identical for both the in�ation and its conditional variance and it prohibits time

variation. The second one excludes the participation of the drifts and the presence (due to the in-mean

e¤ect) of the MA terms. The third metric ignores the presence of the MA structure. The fourth criterion

incorporates the involvement of the MA terms but it does not take into account the drifts.

Notice that the last three measures are unconditional ones. 10 The corresponding conditional 2nd

and 4th measures are given by P (AR)k (y� ) and P
(MA)
k (y� ), see Notations 2(i) and 3(i), respectively. The

conditional analogous of the mean is the �rst element of 'k(�) in eq. (10).

There is a straightforward connection between persistence and predictability. The second conditional

measure of persistence, P (AR)k (y� ), is derived from the deterministic part of the optimal forecast, that is

'k(�) in eq. (10). The fourth conditional criterion, P
(MA)
k (y� ), is retrieved from the forecast errors in

eq. (9).

Time Invariant Case

Next we will see how the forenamed measures of persistence simplify when the coe¢ cients are constant.

The limits of '(�), P(AR)� , P(MA)
� (see eqs. (12), (15) and (17), respectively) as r !1, denoted hereafter

by ', P(AR), P(MA) respectively, are given by (setting ' = '1, � = �1 and Z = Z1):

P(AR) = (I��)�1; (18)

'(�) = (I��)�1';

P(MA) = J+(I��)�1(�J+ Z):
9The time varying MA coe¢ cients in the Wold-Cramér representation are called Green functions (see, for example,

Karanasos et al., 2022).
10Moreover, to save space the equivalent persistence measures for the power transformed conditional variance are not

reported but are available upon request.
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Next we will use the notation: D = (1 � �)(1 � c) � d& and max(a � b) = max(a + b; a � b). The four

(unconditional) measures of persistence for the time invariant case are obtainable from the eqs. (18) by

straightforward algebra:

� 1st. max( 12 [(�+ c+ &d)�
p
(�� c+ &d)2 + 4d�c)

� 2nd. P (AR)(y) = 1�c(1�&)
D

� 3rd. E(yt) = 1
D [(1� c)'+ &!]

� 4th. P (MA)(y� ) = 1 +
(1�c)�+(d+�)&

D

It is apparent that if &; d > 0 (positive in-mean and level e¤ects) then higher either in-mean or level

e¤ects increase the persistence. For example, regarding the LAR we have:

max(
1

2
[(�+ c+ &d)�

p
(�� c+ &d)2 + 4d�c)| {z }

positive in-mean and level e¤ects

> max(�; c)| {z }
in-mean e¤ects

� �|{z}
AR model

:

When there are no level e¤ects the measures simplify to:

� 1st. max(�; c)

� 2nd. P (AR)(y� ) = 1
1�� (1 +

1+c&
1�c )

� 3rd. E(yt) = 1
1�� ('+

&!
1�c )

� 4th. P (MA)(y� ) = 1 +
1

1�� (�+
&�
1�c )

It is evident that & > 0 (& < 0) increase (decrease) the persistence. Setting & = 0, we obtain the well

known measures of persistence for the AR(1) model:

1st. LAR = �, 2nd and 4th. 1=(1� SAR) = 1

1� � , 3rd. E(yt) =
'

1� � .

4 Data and Empirical Results

In our empirical application we consider log-di¤erences of quarterly data of Personal Consumption Ex-

penditure (CPE) in the United States from 1947Q1 to 2021Q3. The data were collected from the Federal

Reserve of St. Louis data bank.

4.1 Testing for Breaks

The �rst step in the estimation procedure is to identify possible points of parameter changes. Failure

to identify in-sample breaks that change the data generating process of the in�ation series produces

biased parameter estimates and a¤ects the model�s out-of-sample forecasting performance. Ideally, if

information on breaks, such as breakpoints and break sizes, is known, we can decide the estimation
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window size according to the trade o¤ between the bias and forecast error variance to improve the

out-of-sample forecasting errors (see Pesaran and Timmermann, 2005).

With this target in mind the Perron et al. (2020) sequential test on in�ation series is used to identify

possible breaks during the sample period. The authors provide a comprehensive treatment for testing

jointly for structural changes not only in the conditional mean but also in the conditional variance. The

inference procedure is more general than the widely used Bai and Perron (2003) as it allows for the break

dates in the conditional mean and the conditional variance to be di¤erent or overlap.11 This property

of the test constitutes an important step forward since a growing number of empirical works have found

that regime changes in the conditional variance are a characteristic feature of many macroeconomic time

series and that regime shifts often do not occur at the same time as regime shifts in the conditional mean

(see Sensier and Dijk, 2004 and the references therein). In addition the test is particularly suitable for the

model in Eq. (1) since the procedure only requires mild assumptions on the innovations and conditional

heteroskedasticity is permitted (see Perron et al., 2020 for more details).

To locate the breaks we estimate a model for the in�ation series with only a constant. The result-

ing speci�cation is a pure structural change model that allows for km breaks in the conditional mean

parameters and kv breaks (or kv + 1 regimes) in the variance of the innovations occurring at unknown

dates.12 The breaks in the variance and in the conditional mean coe¢ cients can happen at di¤erent

times, hence the km-vector breaks in the conditional mean and kv-vector breaks in variance can have all

distinct elements or they can overlap partly or completely.

Following Perron et al. (2020) we adopt a speci�c to general procedure that uses the sequential test

to determine the number of breaks in the conditional mean and variance allowing for a given number of

breaks in the other component. The test evaluates whether including an additional break is warranted.

Let (Tm1 ; :::; T
m
km
;T v1 ; :::; T

v
kv
) be the estimates of the break dates in the conditional mean parameter

and the error variance obtained jointly by maximizing the quasi-likelihood function (logLT ) assuming km

breaks in conditional mean and kv breaks in variance. To test whether an additional break in conditional

mean constant is present we use

supSeqT (km + 1; kvjkm; kv) = max
1�j�km+1

sup
�2�mj;l

logLT
�
Tm1 ; :::; T

m
km ; � ; T

v
1 ; :::; T

v
kv

�
(19)

� logLT
�
Tm1 ; :::; T

m
kv ; � ; T

v
1 ; :::; T

v
kv

�
11Note the issue of testing for structural breaks in the context of forecasting has been heavily investigated in the literature

(see for example Peseran and Timmerman, 2005). For example, Maheu and Gordon (2008) suggest a Bayesian method for
forecasting under structural breaks and assume that the post-break distribution is given by a subjective prior. Similarly,
Peseran et al. (2006) propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks
over the forecast horizon, taking account of the size and duration of past breaks (if any) by means of a hierarchical hidden
Markov chain model. Predictions are formed by integrating over the hyper parameters from the meta distributions that
characterize the stochastic break point process.

12Note that Perron et al. (2020) consider a model speci�cation with martingale di¤erence errors and not the GARCH-
in mean type of model considered in this paper. However, given that the GARCH-in mean only involves including the
estimated standard deviation in the conditional mean equation the limit theory provide in Perron et al. (2020) might also
be valid for the type of model considered in this paper. Providing the limit distribution of the Perron et al. (2020) test for
the GARCH-in mean case is outside the scope of the paper.
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where �mj;u =
�
� ; Tmj�1 +

�
Tmj � Tmj�1

�
u � � � Tmj�1 �

�
Tmj � Tmj�1

�
u
	
and u is a truncation imposing a

minimal length for each segment. This amounts to performing km + 1 tests for a single break in the

conditional mean for each of the km + 1 regimes de�ned by the partition
�
Tm1 ; :::; T

m
km

	
.

Note that there are di¤erent scenarios when allowing breaks in the conditional mean and in the

variance to happen at di¤erent dates, since
�
Tm1 ; :::; T

m
km

�
and

�
T v1 ; :::; T

v
kv

�
can partly or completely

overlap or be altogether di¤erent.

The computation of the estimates of the breaks using a sequential procedure is obtained by QML and

the limit distribution of the test for martingale di¤erence errors is provided by Perron et al. (2020).

Similarly, to test whether an additional break in the variance is present the test statistic is given by

supSeqT (km; kv + 1jkv; kv) = (2=%)max
1�j�kv+1

sup
�2�mj;l

logLT
�
Tm1 ; :::; T

m
km ; � ; T

v
1 ; :::; T

v
kv

�
(20)

� logLT
�
Tm1 ; :::; T

m
km ; � ; T

v
1 ; :::; T

v
kv

�
where �mi;u =

�
� ; T vi�1 +

�
T vi � T vi�1

�
u � � � T vj�1 �

�
T vi � T vi�1

�
u
	
and (2=%) is a factor that is needed

to ensure that the limit distribution of the test is free of nuisance parameters.

As in the previous case the test is applied to each segment containing the Tkv�1 to Tkv (i = 1; :::; kv+1).

In particular, the procedure involves using a sequence of tests, where the conclusion of a rejection in favour

of a model with (kv +1) breaks if the overall minimal value of the sum of squared residuals is su¢ ciently

smaller than the sum of the squared residuals from the kv break model. Also in this case, the computation

of the estimates of the breaks occurring at unknown date is obtained by QMLE and the limit distribution

of the test is given in Perron et al. (2020).

The results of the structural break test are reported in Table 1. In the top panel of Table 1 the second,

third and fourth columns report the calculated value of the statistic for the hypotheses of km = 0; :::; 3

breaks in the conditional mean given kv = 0; :::; 3 breaks in the variance. Similarly, in the bottom part of

Table 1, the second, third and fourth columns report the calculated value of statistic for the hypothesis

of kv = 0; :::; 3 breaks in the variance given km = 0; :::; 3 breaks in the conditional mean. We assume

that there are at most three breaks in the conditional mean and/or in the variance. Finally, in the last

column of Table 2 the estimated break dates are reported.

Table 1. Perron et al : (2020) sequential procedure to determine breaks in the in�ation data.
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sup Seqm;T
km= 1 km= 2 km= 3 Break Dates

kv= 0 7.04 14.53�� 13.99�� 1990Q4
kv= 1 7.04 14.50�� 14.53�� 1990Q4
kv= 2 4.53 14.49 14.73
kv= 3 5.56 13.58�� 13.31�� 1990Q4

sup Seqv;T
kv= 1 kv= 2 kv= 3 Break Dates

km= 0 10.62�� 11.25� 11.38� 1990Q4
km= 1 8.42 11.23� 15.91���

km= 2 11.25�� 3.15 11.71�

km= 3 5.83 3.10 11.70� 1954Q4

Note: Table 1 reports the calculated Perron et al. (2020) test for structural breaks. Note ***), **), *) indicates rejection

of the null hypothesis at 1%; 5% and 10%, respectively.

Looking at the calculated values of the test, the sequential procedure Sup Seqm;T detects three breaks

in the mean in 1990Q4, irrespective of how many variance breaks are accounted for. On the other side, the

sequential procedure using the Sup Seqv;T test detects one break in the error variance that also occurred

in 1990Q4 and a break in 1954Q4 in the conditional variance only.

The �rst break took place in the 1950s when the economy experienced a surge in in�ation in the

run-up to the Korean war. In particular, the period of 1950-1953 coincides with mobilization for the

Korean war, and the recession the followed after the end of the war. The second break occurred at the

beginning of the 1990s. This �nding is interesting since it supports the empirical results in Del Negro

et al. (2020) where it is found that the Phillips curve �attened around the 1990s. The authors argue

that around that period the path of in�ation and unemployment changed mainly due to three reasons.

First, the labour markets undertook major changes making unemployment a poorer indicator of both

the degree of resource spare capacity in the economy and of the cost pressures faced by �rms. Second,

�rms�pricing decisions became less sensitive to these cost pressures. Third, monetary policy became

more successful in stabilizing in�ation using for example in�ation targeting policies (see also McLeay and

Tenreyro, 2019). The view that the stability of in�ation over the past 30 years was not due to cyclical

behavior but a major structural change is also corroborated in Ball and Mazumder (2011), Bobeica and

Jarocinski (2017), Eser et al. (2020).

Accordingly, below we estimate the DAB-AR(1; 2)-ML model in eq. (1), allowing for persistence of

in�ation (as captured by the autoregressive coe¢ cient, �(t)) and the in-mean coe¢ cient, &(t), to switch

across breakpoints. Similarly, we allow for the coe¢ cients of eq. (2) to switch across the break points.

4.2 Estimated Models

Table 2 reports the estimated parameters of the model in eqs.(1)-(2) for the in�ation series and the

relative misspeci�cation tests. In particular, the top part of Table 2 reports the estimated parameters
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for the conditional mean, whereas the coe¢ cients for the conditional variance are given in Panel B. Note

that in the preliminary model selection procedure a number of speci�cations were estimated, however, in

Table 2 we only report the subset of best model speci�cations. All the models were estimated with � = 1

in eqs. (1)-(2).13

In Table 2 four model speci�cations are reported, we label these models M1, M2, M3, M4, respectively.

Model M1 is a simple AR(1)-(P)GARCH(1; 1)-M speci�cation with no breaks, which is nested in eqs.

(1)-(2) and serves as a benchmark. If the estimated sign of the parameter & is positive, then in�ation

uncertainty will raise the in�ation rate, supporting the stand of Cukierman and Meltzer (1986); however,

if its sign is negative, in�ation uncertainty will decrease the in�ation rate, supporting the claim of Holland

(1995). In model M2 the impact of in�ation on its uncertainty is determined by the sign of coe¢ cient d. If

the Friedman (1977) (see also Ball, 1992) hypothesis holds in this model d > 0. Therefore, also model M2

is nested in eqs. (1)-(2) with no breaks. Note that in model M2 there is a bidirectional feedback between

the conditional mean and variance (in-mean and level e¤ects). Model M3 is similar to the speci�cation

model M2, but it allows for the impact of regime changes in the intrinsic persistence (a regime shift in

1990Q4) and the in-mean parameter (a regime change in 1954Q4), accordingly �1 6= 0 and &1(= &2) 6= 0.

Finally, model M4 allows for a break in the constant of the conditional mean equation in 1990Q4 (i.e.

'1 6= 0) and regime changes in the conditional variance equation in the level parameter (d1 6= 0) again

in 1990Q4, in addition to a break in the variance persistence in 1954Q4 (i.e. �1(= �2) 6= 0).
13Karanasos and Schurer (2008) show that it is optimal to model the conditional standard deviation of in�ation instead

of the conditional variance. So far the relevant empirical literature has ignored this important characteristic of the in�ation
data. We will use the acronym (P)ARCH, since � is not estimated but it is set equal to one.
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Table 2. Estimated DAB-AR(1; 2)-M model using U.S. in�ation data

M1 M2 M3 M4
Panel A: Conditional Mean

' 0:0004
(0:000)

0:0004
(0:000)

0:002�� 0:001�
(0:0006)

'1 � � � �0:001�
(0:0004)

� 0:769���
(0:048)

0:749���
(0:044)

0:598���
(0:048)

0:699���
(0:051)

�1 � � 0:318���
(0:035)

�

& 0:354�
(0:200)

0:396��
(0:169)

0:549���
(0:213)

0:434��
(0:200)

&1 = &2 � � 0:233���
(0:022)

�

Panel B: Conditional Variance
! 0:0002

(0:0008)
0:0001
(0:0001)

0:0011���
(0:000)

0:002
(0:000)

� 0:155���
(0:044)

0:148���
(0:049)

0:173���
(0:050)

0:145���
(0:045)

� 0:846���
(0:038)

0:797���
(0:053)

0:795���
(0:044)

0:825���
(0:047)

�1 = �2 � � � 0:758���
(0:038)

d � 0:016���
(0:009)

0:019���
(0:009)

0:031���
(0:010)

d1 0:024���
(0:009)

R2 0:57 0:58 0:59 0.57
Panel C: Q-Statistics and Information Criteria

Q-Statistics (4) 0:734
[0:848]

0:768
[0:943]

3:735
[0:712]

4:734
[0:692]

Akaike �8:438 �8:392 �8:384 �8:320
Schwarz �8:300 �8:292 �8:272 �8:196

Note: The table reports the estimated parameters of models M1-M4 and the related standard errors . ***, **, * indicate

statistical signi�cance at 1%, 5% and 10%, respectively. In Panel C the calculated values of the Ljung-Box Q statistic and

the p-values are reported along with the information criterion. The parameters in the three periods are as follows, i.e., for

�: � = �3 in the pre-1955Q1 period, �2 in the second period, and �1 in the post 1990Q4 period.

Looking at the estimated parameters two important results arise from Table 2. First, the estimated in-

mean parameter, & (and &1), is positive and statistically signi�cant in all the estimated models. The sign

of the estimated parameter con�rms the Cukierman-Meltzer hypothesis that uncertainty about future

in�ation positively a¤ects in�ation. However, the estimated parameters for d (and d1) are also positive

and signi�cantly di¤erent from zero thus supporting the Friedman (1977) hypothesis that an increase in

in�ation may induce more uncertainty about future in�ation. This result is consistent with the one in

Conrad and Karanasos (2015a). 14 The estimation results in model M2 also suggest that estimating the

conditional mean and variance equation independently would obtain a biased estimate of the degree of

persistence since from Proposition 3 it is clear that yt and �t share the same autoregressive polynomial.

Coming now to Model 3 and Model 4, the former suggests a sharp decrease of intrinsic persistence

in the 90s since the estimated parameter �1 < � and signi�cantly di¤erent from zero.15 Similarly,

14 In the literature Kontonikas (2004), Daal et al. (2005), and Fountas and Karanasos (2007) also �nd evidence of the
positive e¤ect of in�ation on in�ation uncertainty.
15Note that attempts to estimate models with regime changes in ! and � returned estimated parameters that were not
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according to model M3 the estimated coe¢ cient &1(= &2) < &; thus suggesting a smaller impact of

in�ation uncertainty after the 1954. Model M4 tells a similar story, since it also suggests a decrease

in the persistence of the conditional variance in the post-1954 period and a regime change in the level

parameter in the 1990s (i.e. d > d1).

The empirical estimates in models M3 and M4 are consistent with the hypothesis by Nel Negro et

al. (2020) of a �attening of the Phillips curve around the 1990s and it is in line with a general reading

of Federal Reserve policy history. Before the 1990s, in�ation persistence was relatively high, suggesting

that the preference for in�ation stability was weak relative to the goal of stabilizing output. A decline

in persistence started with so called Volcker disin�ation period suggesting that the Federal Reserve

became substantially more concerned with in�ation stabilization after the 1980s. In�ation and in�ation

persistence remained low during Greenspan�s tenure, suggesting continued strong preferences for in�ation

stability and transparence of monetary policy (see McLeay and Tenreyro, 2019). Other factors in the

economic environment may also have been at play, helping to drive in�ation persistence lower after the

1990s. The results support the claim in Stock and Watson (2007) that in�ation has been much less

volatile in the last thirty years than it was in the 1970s or early 1980s.

Looking now at the speci�cation tests in Panel C the reported values of the Ljung-Box Q statistic do

not reject the null hypothesis that there is no autocorrelation up to the forth order, thus indicating the

absence of serial correlation.

4.3 Forecasting Exercise

A rolling forecast experiment is implemented in order to compare the forecasting ability of the di¤erent

model speci�cations in Table 2. That is, the out-of-sample predictive properties of the estimated models

are investigated via a rolling forecast experiment.

The forecasting exercise is based on the �xed-rolling windows scheme by Rossi and Sekhposyan (2010):

in a set of periods f1; :::; Tg, we produce a number P of forecasts obtained by using estimates of a

regression. Thus, there are P out-of-sample predictions to be evaluated, where the �rst out-of-sample

prediction is based on a parameter estimated using data generated by the estimated model up to time R;

the second prediction is based on a parameter estimated using data up to R+1, and the last prediction is

based on a parameter estimated using data up to R+P �1 = T , where T s = R+P +h�1 = T +h is the

size of the available sample and h = f3; 8; 12g being the pseudo-out-of-sample horizon. Our data spans

from 1947Q2 to 2021Q3 so that T = 297 is the in-sample part; the estimation part spans from 1947Q3

to 1983Q4 (corresponding to R = 147) and the evaluation part from 1984Q1 to 2018Q3 (corresponding

to P = 138). These last are the basis to compute the aggregate measures of point and density forecasts

which allow to evaluate the best performing model.

signi�cantly di¤erent from zero.
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The rolling-window forecast scheme was preferred to a recursive (or expanding) scheme, since the

latter is better able to handle the parameter switching in the in�ation series. Moreover, it is consistent

with the conventional view that more recent observations are more informative than those at the very

beginning of a sample period. The out-of-sample forecast comparisons do not rely on a single criterion,

for robustness we compare the results using point and density measures of accuracy.16

a) Point Forecasts Measures

Let ŷt the estimated in�ation series of each model j, the point predictive performances of model

are investigated using three di¤erent measures: the mean forecast error (MFE), the symmetric mean ab-

solute percentage error (sMAPE) and the median relative absolute error (mRAE). The three performance

measures are calculated as follows:

MFEj;h =
1

T � h� T s + 1

T�hX
t=T s

�
yt+h � ŷ(j)t+hjt

�
;

sMAPEj;h =
100jyt+h � ŷ(j)t+hj
0:5(yt+h � ŷ(j)t+hjt)

;

mRAEj;h =
jyt+h � ŷ(j)t+hj
jyt+h � ŷ(1)t+hj

; with (1) indexing the benchmark model; :

b) Density Forecast Measures

The literature on the aggregation of density forecasts focuses on the so-called scoring rules (see, for

example, Geweke and Amisano, 2011). These are functions that enable the forecaster to aggregate the

set of conditional predictive densities. As for point forecasting, the out-of-sample forecast comparisons

are based on four di¤erent scoring rules are used for aggregating the T � T s � h+ 1 predictive densities

produced by the same forecasting exercise:

The logarithmic score (LogS):

LogSj;h =
1

T � h� T s + 1

T�hX
t=T s

log f
(j)
t+hjt; (21)

which corresponds to a Kullback-Liebler distance from the true density; models with higher LogS are

preferred.

The quadratic score, somewhat the equivalent of the MSFE in point forecasting, is de�ned as:

QRSj;h =
1

T � h� T s + 1

T�hX
t=T s

KX
k=1

�
f
(j)
t+hjt � dkt

�2
;

16The literature on point forecasting and the evaluation of individual density forecasts is well established; see for example
Corradi and Swanson (2006).
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where dkt = 1 if k = t and 0 otherwise; models with lower QSR are preferred.

The (aggregate) continuous-ranked probability score (CRPS), equivalent to the sMAPE, is given by:

CRPSj;h =
1

T � h� T s + 1 �
T�hX
t=T s

����ft+h � f (j)t+hjt

���� 0:5 ���ft+h � f 0t+hjt���� ;
where f and f 0 are independent random draws from the predictive density and ft+hjt is the observed;

models with lower CRPS are preferred.

Finally, the quantile score (qS), which can be obtained if f (j)t+hjt is replaced with a predictive �-level

quantile q�t+hjt in eq. (21) (and the logarithmic function is removed); this score is used in risk analysis

because it provides information about deviations from the true tail of the distribution. The lower the

score, the better the forecasts are.

Table 3 reports the results of the h-step-ahead forecasts for the forecast period h = f3; 8; 12g. In Panel

A the point forecast measures are reported, whereas density forecast performance measure are reported

in Panel B. In columns 1 and 2 the forecasting horizon and the forecast error measures are reported,

respectively, whereas in columns 3-6 the forecasting results for each model are reported.
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Table 3. Forecasting in�ation: point and density predictive performances for models M1-M4.

Forecast Horizon Forecast Error Measure M1 M2 M3 M4

PANEL A: Point Forecasts

3 MFE 0.0020 0.0009 0.0005 0.0005
8 0.0026 0.0016 0.0012 0.0011
12 0.0033 0.0027 0.0018 0.0018

3 sMAE 0.0045 0.0021 0.0018 0.0020
6 0.0052 0.0024 0.0022 0.0025
12 0.0057 0.0025 0.0024 0.0027

3 mRAE 1.000 0.9450 0.9539 0.9511
8 1.000 0.9551 0.9610 0.9588
12 1.000 0.9555 0.9700 0.9626

PANEL B:Density Forecast

3 LogS 0.1459 0.1452 0.1430 0.1435
8 0.1500 0.1427 0.1422 0.1424
12 0.1588 0.1442 0.1440 0.1429

3 QRS 0.6940 0.6803 0.6774 0.6771
8 0.7020 0.699 0.6997 0.6835
12 0.7122 0.5063 0.7332 0.6956

3 CRPS 0.8900 0.8914 0.8930 0.8913
8 0.9063 0.9060 0.9035 0.8925
12 0.9134 0.9181 0.9093 0.9065

3 qS 0.0240 0.0235 0.0235 0.0237
8 0.0262 0.0260 0.0259 0.0264
12 0.0265 0.0263 0.0260 0.0271

The table compares the four di¤erent models in their out-of-sample forecasts. In Panel A the point forecast measures

are i) the mean forecast error (MFE), ii) the symmetric mean absolute percentage error (sMAPE), and iii) the median

relative absolute error (mRAE). In Panel B the density forecast measures are: i) the logarithmic score (LogS), ii) the

quadratic score (QSR), iii) the continuous-ranked probability score (CRPS), and iv) the quantile score (qS). The forecast

horizon is 3, 8, and 12 quarters.

From Panel A of Table 3 it is clear that according to the point performance measures, models that allow

for structural breaks perform better than their counterpart in all cases but one. The density performance

measures reported in Panel B are in line with the results of the point loss functions, thus con�rming that

models that allow for time varying parameters enjoy better forecast performance, especially for medium

and long run horizons.

Given the ranking obtained in the previous section, we now investigate whether the predictive densities

in Table 3 are signi�cantly di¤erent from each others. With this target in mind we investigate weather the

speci�cations M3 and M4 perform better than M1 and M2 using three tests: the DM test (Diebold and
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Mariano, 1995), the GW test (Giacomini and White, 2006) and the AG test (Amisano and Giacomini,

2007) for equal predictive ability for pairs of forecast.

In brief, the DM test has under the null hypothesis that the forecast errors coming from the two

forecasts bring about the same loss. Under the assumption that the loss di¤erential is a covariance

stationary series, the loss di¤erential converges asymptotically to a normal distribution. A possible

drawback of this test is that the procedure has been designed for non nested models and may be not

accurate in our case. Accordingly, we also consider the GW and AG tests inference procedures that are

valid under more general conditions. In addition, the forecasts can be based on nested or nonnested

models.

The GW test can be seen as a generalization of the DM test and it measures the conditional predictive

ability rather than the unconditional predictive ability. Like the DM procedure, the test measures the

statistical signi�cance of the di¤erences of two models forecasts. Under the null hypothesis the test is

asymptotically distributed as a �2-distribution. Unlike the previous tests, the AG test is an inference

procedure useful for comparing the out-of-sample accuracy of competing density forecasts since it allows

to test if the predictive densities of competing models are signi�cantly di¤erent from each others. The

evaluation is based on scoring rules, which are loss functions de�ned over the density forecast and the

realizations of the variable (see, for details, Amisano and Giacomini, 2007).

Table 4 reports the estimated p-values of the tests. The �rst column reports the forecast horizon,

whereas columns 2-6 report the p-values for di¤erent null hypotheses. In column two, under the null

hypothesis the conditional predictive ability of the loss di¤erential of model M1 is higher or equal than

that of model M2. Hence, rejecting the null means that the forecasts of model M2 are signi�cantly more

accurate than those of model M1. Likewise, in column three and four, under the null hypothesis the

conditional predictive ability of the loss di¤erential of model M1 is higher or equal to the conditional

predictive ability of model M3 and model M4, respectively. The goal of this exercise is to investigate if

the benchmark model M1 outperforms the other models. Finally, in the last two columns we investigate

if models M2 and M4 outperform model M2.
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Table 4. Predictive ability tests for di¤erent models in quarterly in�ation data.

Forecast Horizon M2 vs M1 M3 vs M1 M4 vs M1 M3 vs M2 M4 vs M2

Diebold-Mariano
3 0.035 0.052 0.004 0.041 0.039
8 0.053 0.048 0.031 0.054 0.050
12 0.075 0.048 0.045 0.058 0.068

Giacomini-White
3 0.045 0.003 0.009 0.044 0.046
8 0.074 0.046 0.030 0.067 0.060
12 0.099 0.033 0.033 0.099 0.066

Amisano-Giacomini
LogS
3 0.041 <0.000 <0.000 0.013 0.028
8 0.021 <0.000 <0.000 0.041 0.040
12 0.010 <0.000 <0.000 0.048 0.052
QRS
3 0.034 0.007 0.006 0.032 0.065
8 0.045 0.012 0.034 0.048 0.083
12 0.091 0.030 0.057 0.055 0.094

CRPS
3 0.153 0.142 0.113 0.092 0.084
8 0.124 0.104 0.091 0.135 0.099
12 0.092 0.099 0.053 0.136 0.125
qS
3 0.013 0.020 0.030 0.056 0.056
8 0.022 0.043 0.041 0.071 0.068
12 0.019 0.044 0.041 0.078 0.076

NOTE: The table reports the results of equal predictive ability tests for models M1-M4 on quarterly U.S. in�ation

data for the testing period from 1947:Q1 to 2021:Q3. All of the tests consider density forecasts generated according to the

models estimated in Table 2.

Looking at the estimated p-values in Table 4 it is clear the all three tests reject the null hypothesis of

equal conditional predictive ability of the benchmark model M1, thus we can conclude that when it comes

to forecasting in�ation it is important taking into consideration the impact of in�ation on its uncertainty.

Looking now at the last two columns of Table 4 it is clear that models M3 and M4 outperform model

M2. Overall, model M3 has the smallest forecast errors and is preferred in almost all forecast horizons

according to the other point forecast measures. This prominence is broken by model M4 if considering

density forecasts.

5 Forecasting Evaluation of Alternative Models

In the previous section we have shown that the DAB-AR-ML model captures the relation between in�ation

and its uncertainty well and it has good predictive power. However, a useful forecasting exercise requires

an evaluation against competitive models. Accordingly, in this section we investigate the forecasting

properties of the DAB-AR-ML speci�cation by comparing the forecasting performance of the suggested
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model to alternative linear and nonlinear speci�cations.

In the related literature the random walk (RW) has often been used in empirical studies to forecast

in�ation as a benchmark (see for example Atkeson and Ohanian, 2001, Fisher et al. 2009). In the

literature autoregressive models are also found useful to forecast in�ations in the United States; see for

example Giordani (2003), and Orphanides and Van Norden (2005). Autoregressive processes have been

used in the context of testing for the long-run e¤ect of a shock to in�ation, mainly using the LAR and

SAR measures of persistence. For this reason, in this study the AR(p) is used as a benchmark model in

the forecasting competition.17 Coming to nonlinear speci�cations, modelling in�ation using STAR-type

models has become increasingly popular in recent years as these models allow for endogenous regime

switching mechanism in the in�ation persistence. Most empirical works accommodate the departure

from linearity of the price change series by using a transition or switching mechanism that captures

the fact that the in�ation persistence behaves di¤erently according to the state of the economic cycle

(see for example Rossi and Sekhposyan, 2010; Hubrich and Skudelny, 2016). Therefore, the smooth

transition autoregressive model (STAR) (see, for example, Teräsvirta et al., 2005) is considered in this

paper. Finally, we consider an autoregressive Markov regime switching GARCH-M model that is similar

to the speci�cation in eqs. (1) and (2), but it also allows for endogenous switching of the parameters.

As far as the model estimation is concerned, following Atkeson and Ohanian (2001), the RW model

predicts that in�ation over the next three quarters is expected to be equal to in�ation over the previous

three quarters. As for the autoregressive model the maximal lag order of the AR(4) model was chosen

by using the Bayesian information criterion and the Portmanteau test for serial correlation.

Coming to the STAR model, the test for linearity suggested by Luukkonen et al. (1988) rejected

the null hypothesis of linearity in the time series under consideration.18 Following the model selection

procedure in Teräsvirta et al. (2005) it was found that the STAR model with a logistic transition function

(LSTAR model) was the best model speci�cation. Accordingly the following model was estimated

yt =

"
'+

4X
i=1

�iyt�i

#
+

"
�0 +

4X
i=1

�iyt�i

#
[1 + exp f��g (yt�d � g)]�1 + "t; (22)

where � > 0. In eq. (22) in�ation evolves with a smooth transition between low and high persistence

regimes that depends on the sign and magnitude of past realizations of price growth rates. The parameter

� denotes the speed of transition between regimes and g measures the threshold between the two regimes.

Considering now the regime switching model (MS-AGARCH-M) in this speci�cation in�ation persis-

tence switches between high and low regimes according to an autoregressive Markov switching model.

Following Chang (2012) (see also Ardia, 2008; Marcucci, 2005; Chan, 2012) we consider the following

model
17Note that in the literature ARIMA processes have also been used to forecast in�ation. The forecasting properties of

this model in case of structural breaks are investigated in Canepa et al. (2019).
18The linearity test is not reported but it is available upon request.
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yt = � (s1t) + � (s1t) yt�1 + & (s1t)� (s2t) + "t; (23)

�2 (s2t) = ! (s2t) + � (s2t) "
2
t�1 + � (s2t) I("t�1>0)"

2
t�1 + � (s2t)�

2
t�1: (24)

Parameters shown in eq. (23) are in�uenced by state variable s1t. �(s1t) and � (s1t) refer to the

intercept term and autoregressive term, respectively. As before the parameter & (s1t) represents the in-

mean term and it re�ects the regime-dependent e¤ect of in�ation uncertainty on in�ation. Eq. (24)

shows the regime-dependent variance equation. The conditional variance is an asymmetric GARCH

speci�cation, and it is related to the state variable s2t but not to the state variable s1t. I("t�1>0) is an

indicator variable with value 1, if "t�1 > 0, and with value 0, if "t�1 � 0. According to this model the

impact of in�ation on its uncertainty is replaced by the asymmetry term � (s2t).19 Finally, the state

variable s1t is assumed to have two di¤erent values. When its value is equal to 1, the economic system

belongs to the increasing in�ation pressure state (the in�ation increases from the bottom to the peak).

On the contrary, when its value is equal to 2, the economic system belongs to the decreasing in�ation

pressure state (see, for more details, Chang, 2012). The model has been estimated by QML under the

assumption the error term follows a Student-t distribution.

The estimation of the parameters for the four di¤erent models are reported in Appendix 2, whereas in

Table 5 the results of the forecasting exercise are given. In columns one and two the forecasting horizons

and the forecast error measures are reported, whereas in columns 3-6 the forecasting results for each

model are reported. Note that in Table 5 only the performance of models M3 and M4 are reported since

according to the results in Table 4 these models are the preferred model speci�cations.20

19Note that unlike the DAB-AR-ML model the speci�cation adopted by Chang (2012) does not allow to simultaneously
tests both the impact of in�ation on its uncertainty and the in-mean e¤ect. Rather than focusing on the level e¤ect, the
model in Chang (2012) captures the impact of asymmetries to the conditional variance. However, in this paper we are more
interested on the impact of in�ation on its uncertainty. Therefore, we follow Fountas and Karanasos (2007) and introduce
the lagged yt directly into the conditional variance equation.
20Note that similar results for models M1 and M2 are available from the authors upon request.
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Table 5. Forecasting performance measures for alternative estimated models.

Forecast Horizon Forecast Error Measure RW AR(4) LSTAR MS-AGARCH-M
PANEL A: Point Forecasts

3 MFE 0.0150 0.0155 0.0144 0.0075
8 0.0208 0.0189 0.0125 0.0102
12 0.0227 0.020 0.0179 0.0109

3 sMAE 0.0067 0.0028 0.0019 0.0022
8 0.0089 0.0046 0.0031 0.0048
12 0.0102 0.0050 0.0031 0.0050

3 mRAE 1.4553 1.2445 1.0975 1.0556
8 1.4885 1.2890 1.1355 1.0592
12 1.4896 1.2867 1.1367 1.0600

PANEL B:Density Forecast

3 LogS 0.2446 0.1836 0.1764 0.1670
8 0.3055 0.1996 0.1963 0.1773
12 0.3055 0.2004 0.1970 0.1774

3 QRS 0.8944 0.7853 0.6998 0.6920
8 0.9935 0.8934 0.7100 0.7036
12 1.1306 0.9631 0.7250 0.7110

3 CRPS 1.0068 0.9133 0.9066 0.8958
8 1.0466 0.9268 0.9765 0.9230
12 1.3561 0.9278 0.9769 0.9295

3 qS 0.0350 0.0256 0.0254 0.0256
8 0.0500 0.0288 0.0273 0.0274
12 0.0588 0.0277 0.0275 0.0274

The table compares RW, AR(4), LSTAR, MS-AGARCH-M in their out-of-sample forecasts. In Panel A the point

forecast measures are i) the mean forecast error (MFE), ii) the symmetric mean absolute percentage error (sMAPE), and

iii) the median relative absolute error (mRAE). In Panel B the density forecast measures are: i) the logarithmic score

(LogS), ii) the quadratic score (QSR), iii) the continuous-ranked probability score (CRPS), and iv) the quantile score

(qS). The forecast horizon is 3, 8, and 12 quarters.

Looking at the results from Table 5 it appears that the random walk model has the worst performance

in forecasting the in�ation process. The AR(4) certainly bits the RW model in term of forecasting perfor-

mance. Looking now at the models that allow for changes in the in�ation persistence the LSTAR model

appears to be the worst speci�cation in term of forecasting performance, whereas the MS-AGARCH-M

which allows for two states in�ation uncertainty has better performance.21 Overall, the DAB-AR-ML

21The choice of length of the "estimation" and "evaluation" parts of the samples allows us to avoid a bias in favor of the
models M3 and M4 this is because the hight oscillations of the series in the �rst half of the sample (corresponding to the
estimation part) could in principle, favor nonlinear models such as the LSTAR speci�cation rather than GARCH families.
The second half of the sample (corresponding to the evaluation part) has still some nonlinear features, but the change in
the variance of the sample after mid-80s seems more compatible with the linear families of models. This may induce the
reader to think that the model M3 may be spurred. We remark, however, that both the sub-samples are characterized by
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model bits their competitors for most forecasting horizons (see also the last two columns of Tables 3 and

5).

Tables 6 and 7 report the estimated p-values of the DM, GW and the GA tests. The �rst column

reports the forecast horizon, whereas columns 2-5 report the p-values for di¤erent null hypotheses. In

column two under the null hypothesis the conditional predictive ability of the loss di¤erential of model

M3 (M4) is higher or equal to that of the RW model. Likewise, in columns three, four and �ve under

the null hypothesis the conditional predictive ability of the loss di¤erential of model M3 (M4) is higher

or equal to the conditional predictive ability of the AR(4), the LSTAR and the MS-AGARCH-M model,

respectively.

Table 6. Predictive ability tests for di¤erent models in quarterly in�ation data.

Forecast Horizon M3 vs RW M3 vs AR(4) M3 vs LSTAR M3 vs MS-AGARCH-M

Diebold-Mariano
3 <0.000 0.004 0.012 1.000
8 <0.000 0.009 0.038 1.000
12 <0.000 0.010 0.040 1.000

Giacomini-White
3 <0.000 0.011 0.015 0.774
8 <0.000 0.010 0.031 0.889
12 <0.000 0.013 0.037 0.941

Amisano-Giacomini
LogS
3 <0.000 <0.000 0.024 0.883
8 <0.000 <0.000 0.051 0.897
12 <0.000 <0.000 0.066 0.990
QRS
3 <0.000 0.006 0.054 1.000
8 <0.000 0.034 0.062 1.000
12 <0.000 0.057 0.092 1.000

CRPS
3 0.004 0.013 0.061 0.988
8 0.009 0.021 0.072 1.000
12 0.022 0.024 0.090 1.000
qS
3 <0.000 <0.000 0.070 0.899
8 <0.000 <0.000 0.093 0.950
12 <0.000 0.002 0.121 1.000

NOTE: The table reports the results of equal predictive ability tests for models M4, RW,AR(4), MS-AGARCH-M on

quarterly in�ation data for the testing period from 1947:Q1 to 2021:Q3. The tests are based on the results of Tables 2,4,5

and the estimated parameters in Appendix 2.

a change in conditional variance, so that the forecasting exercises is e¤ectively fair.

29



Table 7. Predictive ability tests for di¤erent models in quarterly in�ation data.

Forecast Horizon M4 vs RW M4 vs AR(4) M4 vs LSTAR M4 vs MS-AGARCH-M

Diebold-Mariano
3 <0.000 0.039 0.015 0.960
8 <0.000 0.068 0.024 0.985
12 <0.000 0.083 0.036 0.987

Giacomini-White
3 <0.000 0.054 0.016 0.800
8 <0.000 0.071 0.021 0.861
12 <0.000 0.072 0.021 0.866

Amisano-Giacomini
LogS
3 <0.000 <0.093 0.003 0.828
8 <0.000 <0.021 0.014 0.879
12 <0.000 <0.000 0.020 0.901
QRS
3 <0.000 0.030 0.014 1.000
8 <0.000 0.056 0.024 1.000
12 <0.000 0.004 0.048 1.000

CRPS
3 <0.000 0.080 0.041 0.924
8 <0.000 0.029 0.055 0.977
12 <0.000 0.005 0.059 0.995
qS
3 <0.000 0.024 0.018 0.830
8 <0.000 0.046 0.033 0.849
12 <0.000 0.060 0.041 0.888

NOTE: The table reports the results of equal predictive ability tests for models M4, RW,AR(4), MS-GARCH on

quarterly in�ation data for the testing period from 1947:Q1 to 2021:Q3. The tests are based on the results of Tables 2,4,5

and the estimated parameters in Appendix 2.

Coming to the results of the battery of predictive ability tests, overall, the null of equal predictive

ability of model M3 with respect to the other models is rarely accepted. The exceptions are constituted

almost exclusively by MS-AGARCH-M (which is similar to M3 and M4 by construction). These results

are in line with Pettenuzzo and Timmerman (2017) where it is found that accounting for time varying

parameters in models that account for stochastic volatility lead to more accurate forecasts.

6 Estimating Persistence

In Table 2 we have presented two variations of the DAB-AR-ML time varying model that seem to

capture well the characteristic features of the in�ation process. We now employ the AR-(P)GARCH-

ML model to compute the �rst-order persistence presented in Section 3.3, which not only distinguishes

between changes in the dynamics of in�ation and its volatility (and their persistence), but also allows for

bidirectional feedback between in�ation and its volatility. Although according to the information criteria

the best performing model is model M4, it is of interest to calculate the persistence measure for the four
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model speci�cations in Table 2 as they capture four di¤erent scenarios for the in�ation process.

Table 8 presents the time invariant (within each period) �rst-order measures of persistence for the

four models under consideration. In the top part of Table 8, the �rst four columns report the LAR, the

next four columns the 1=(1� SAR), whereas the �rst four columns in the bottom part report the mean

in�ation and the last four columns the sum of the Wold coe¢ cients (or Green functions) (see eq. (18)).

Model M4, which is the preferred one, generates higher persistence than model M3 in all three periods.

Interestingly, both models show high persistence in the pre-1955 period. The persistence decreases in the

period 1955-1990 by 81% according to model M4 and 61% for model M3. It falls further in the post-1990

period by 11% and 45% for models M4 and M3, respectively.

Table 8. First-order persistence for each of the three periods and four models.

LAR 1=(1� SAR)
M1 M2 M3 M4 M1 M2 M3 M4

1947Q1-1954Q4 0:970 0:946 0:961 0:987 53:323 29:866 31:933 106:310
1955Q1-1990Q4 0:970 0:946 0:945 0:928 53:323 29:866 12:260 20:577
1991Q1-2021Q3 0:970 0:946 0:940 0:918 53:323 29:866 6:779 18:313

E(yt) SGF
1947Q1-1954Q4 1:184 0:491 4:474 21:083 12:161 9:583 9:820 27:792
1955Q1-1990Q4 1:184 0:491 1:735 4:048 12:161 9:583 4:769 7:703
1991Q1-2021Q3 1:184 0:491 0:946 3:602 12:161 9:583 2:601 6:856

Note: For each period, n = 1; 2; 3, we use the expressions in eq. (18) to calculate the (within each period time

invariant). First-order persistence for the four models. The four measures are: The largest AR root (LAR), 1=(1�SAR)

where SAR is the sum of the AR coe¢ cients, the mean in�ation (E(yt)), and the sum of the Green functions (SGF).

For comparison Table 8 presents the time invariant �rst-order persistence for models M1 and M2.

They overestimate �rst-order persistence (measured by either 1=(1 � SAR) or SGF) in the second and

third period, whereas they underestimate it in the pre-1955 period. Model M1 and M2 also underestimate

the mean for all three periods.

Therefore our �ndings regarding the �rst-order persistence are in line with the �ndings of Benati (2008)

(see also Angeloni et al., 2003). In sum our main conclusion is that for the two chosen time varying

speci�cations (models M3 and M4) the �rst-order measures of persistence, do not remain unchanged

throughout the whole period 1947-2021 but decrease after 1994 and fall further in the post-1990 period.

These results are in line with Brainard and Perry (2000), Taylor (2000), and Kim et al. (2004), who also

found evidence that U.S. in�ation persistence post 1990th has been substantially lower than during the

previous two decades.

7 Conclusions

In recent years economists have placed signi�cant increasing emphasis on investigating structural shifts in

the dynamics of the in�ation process in the United States. A number of detailed and rigorous empirical
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studies regarding changes in in�ation persistence have, however, reached diverging conclusions. Several

studies �nd evidence of little or no change of in�ation persistence over the past four decades, whereas

others conclude that there has been a pronounced decline over the same period.

In this paper we have attempted to reconcile di¤erent strands of the literature by showing that seem-

ingly con�icting results regarding changes in in�ation persistence actually constitute two sides of the

same problem. Economic theory suggests that changes in the level and the second conditional moment

of in�ation process should be interrelated. However, in the related literature change of persistence in the

level and in the conditional variance are usually analyzed independently. In this paper we show that these

changes are interlinked. We then proceeded by using the general solution of a DAB AR-(PGARCH) M

model to compute time varying persistence measures that are able to take into account the presence of

breaks both on the conditional mean and variance. Finally, comparing a number of competitive model

speci�cations we show that models that allow for time varying persistence have better forecasting prop-

erties with respect to speci�cations that only allow for regime changes in the autoregressive parameters.

APPENDIX 1

In this appendix we present the proofs of Theorems 1 and ??. We will prove Theorem 1 by induction

with respect to k.

Proof. (of Theorem 1). Clearly, it holds for k+r = 1: In eq. (7) setting k = 1, and thus r = k1 = k2 = 0

we obtain eq. (6) since E(y� jF��1 ) = '+�y��1 + Z"��1 and FE(y� jF��k ) = J"� .

Next if we assume that it holds for k, then it will su¢ ce to prove that it also holds for k + 1. First,

rewrite eq. (6) as of time � � k:

y��k = '(� � k) +�(� � k)y��(k+1) + J"��k + Z(� � k)"��(k+1):

Substituting the above equation into eq. (7) using straightforward algebra shows that

y�;k+1 = E(y�
��F��(k+1) ) + FE(y� ��F��(k+1) )

as claimed.

APPENDIX 2

Parameter estimates for alternative models with standard errors:

AR(4) Model:

yt = 0:0012
���

(0:0004)
+ 0:619���

(0:058)
yt�1 + 0:079

(0:067)
yt�2 + 0:123

���
(0:060)

yt�3 � 0:115��
(0:060)

yt�4;

R2 = 0:61, Akaike criterion: �8:099, Schwarz criterion: �8:037.
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LSTAR Model:

yt = 0:0025���
(0:0006)

+ 0:420���
(0:113)

yt�1 + 0:322
��

(0:133)
yt�2 � 0:158yt�3

(0:140)

� 0:158
(0:134)

yt�4

+0:0038+
(0:0038)

0:484��
(0:190)

yt�1 � 0:647���yt�2
(0:221)

� 0:796���yt�3
(0:222)

+0:379��yt�4
(0:194)

�
�
1� exp

�
�405:73�
(245:22)

�
yt�4 � 0:010���

(0:001)

����1
;

R2 = 0:666, Akaike criterion: -8.217, Schwarz criterion: -8.156.

MS-AGARCH-M Model:

yt = 0:0004�s1
(0:000)

+ 0:665���yt�1;s1
(0:061)

+ 0:314�
(0:142)

�t;s1 ;

0:0003s2
(0:0002)

+ 0:579���yt�1;s2�
(0:141)

0:156���
(0:012)

�t;s2 ;

�2t = 0:0005�s1
(0:001)

+ 0:199���"t�1;s1
(0:077)

� 0:243���
(0:051)

+ 0:429��
(0:011)

�2t�1;s1 ;

0:001�s2
(0:000)

+ 0:014���"t�1;s2
(0:015)

+ 0:063
(0:049)

+ 0:625��
(0:153)

�2t�1;s2 ;

The estimated transition probability matrices for s1t and s2t are:

Pr1 =

�
P (s1;t = 1js1;t�1 = 1) P (s1;t = 1js1;t�1 = 2)
P (s1;t = 2js1;t�1 = 1) P (s1;t = 2js1;t�1 = 2)

�
=

"
exp(0:9906)
1+exp(0:9906)

1
1+exp(0:0094)

1
1+exp(0:9906)

0:0094
1+exp(0:0094)

#
;

and

Pr2 =

�
P (s2;t = 1js2;t�1 = 1) P (s2;t = 1js2;t�1 = 2)
P (s2;t = 2js2;t�1 = 1) P (s2;t = 2js2;t�1 = 2)

�
=

"
exp(0:2327)
1+exp(0:2327)

1
1+exp(0:7673)

1
1+exp(0:2327)

0:7673
1+exp(0:7673)

#
:

where Pr(s1;t = 2js1;t�1 = 1) denotes the probability that state variable s1 switches from state 1 to state

2. Similarly, Pr(s2;t = 1js2;t�1 = 2) denotes the probability that state variable s2 switches from state 2

to state 1. Akaike criterion: �8:318, Schwarz criterion: �8:221.

APPENDIX 3: Second Moment Structure

3.1 Time Invariant Case

The formulation in eq. (6) in the main body of the paper allows us to highlights the properties of

the second moment structure of the DAB-BVARMA representation. First we will introduce some further

notation.
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Let X
2 = X 
 X where 
 is the Kronecker product. Let also vec(X) be a vector in which the

columns of matrix X are stacked one underneath the other. Set s� = vec(�� ), see eq. (4) in the main

body of the paper. In addition, let �� denote the zero order bidimensional time varying covariance matrix

of fy�g and 
� = vec(�� ), that is 
� = (Var(y� ); Cov(y� ; ��� ); Cov(y� ; ��� ); Var(��� ))0. For � � t � k2
(the time invariant case) we set 
 = 
� and s = s� .

Assumption 1 (Second-Order). We assume that �max(�
2) < 1.

Notation 4 For ease of presentation we will use the notation G = [gij ]i;j=1;:::;4 where

G = J
2 + (I��
2)�1(�J+ Z)
2: (25)

Theorem 2 Consider the general model in eq. (6) in the main body of the paper. Then, under Assump-

tion 1, for � � t� k2 
 is given by


 = Gs. (26)

Proof. Rewrite eq. (6) in the main body of the paper for � � t� k2:

y� = '+�y��1 + J"� + Z"��1: (27)

In view of eq. (27) the autocovariance matrix, �, under Assumption 1, is given by:

� = ���0 + J�J0 + Z�Z0 + Z�(�J)
0
+�J�Z0:

Applying the vec operator on both sides of the above equation we obtain


 = �
2
 + (J

2
+ Z
2 +�J
 Z+ Z
�J)s;

which implies that


 = (I��
2)�1(J
2 + Z
2 +�J
 Z+ Z
�J)s

= [J
2 + (I��
2)�1(�J
2 + Z
2 +�J
 Z+ Z
�J)]s

= [J
2 + (I��
2)�1(�J+ Z)
2]s:

Thus in light of notation 4 the vec of the autocovariance matrix � can be written as


 = Gs:

This completes the proof of theorem 2.

The Second Moment

The second moment of the power transformed conditional variance, �2 = �2� for � � t � k2, can be

obtained as follows. First, notice that the fourth element of 
 is the time invariant unconditional powered

variance, Var(��� ) = �2 � �21. We recall that for � � t� k2, � = �� , is given by

� =

�
�2=�E(e

2
� ) �1+1=�e�

�1+1=�e� �2�

�
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(see eq. (4) in the main body of the paper)

Next we will consider two special cases.

Case 1 � = 1 and 
 6= 0. For this case � becomes

� =�2

�
1 e�e� �

�
:

Next we use the vec operator to get

s =�2(1 e� e� �)0: (28)

Case 2 � = 2 and 
 = 0. For this case � becomes

s =(�1 0 0 �2�)
0: (29)

Employing the notation g = g41 + (g42 + g43)e� + g44� (the gij�s have been de�ned in eq. (25)) the
next theorem follows.

Theorem 3 Consider the general model in eq. (6) in the main body of the paper. Then, under Assump-

tion 1, for � � t� k2, �2 is given by

�2 =

(
1st Case: �21

1�g i¤ g < 1;

2nd Case: �1(�1+g41)
1�g44� i¤ g44� < 1:

(30)

Proof. 1st Case. On account of eqs. (26) and (28), the fourth element of 
, if and only if g < 1, is given

by

�2 � �21 = g�2 ) �2 =
�21
1� g :

2nd Case. In light of eqs. (26) and (29), the fourth element of 
, if and only if g44� < 1, is given by

�2 � �21 = g41�1 + g44�2�) �2 =
�1(�1 + g41)

1� g44�
;

as required.

Proposition 4 Consider the general model in eq. (6) in the main body of the paper. Then, when d = 0,

that is there are no level e¤ects, if and only if c2 + �2� < 1, �2 for � � t� k2 is given by

�2 =
(1 + c)!2

(1� c)(1� c2 � �2�) ;

which is a standard result (see, e.g., Karanasos, 1999, He and Teräsvirta, 1999, and Karanasos and Kim,

2006).

Proof. In the absence of level e¤ects, since the matrix � is upper triangular, the G matrix is also upper

triangular and its (4; 4) time invariant element is g44 = �2

1�c2 . Thus, the fourth element of 
, which is the

time invariant unconditional variance of ��� , is given by

Var(��� ) = �2 � �21 =
�2�

1� c2�2:
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Using �1 =
!
1�c we obtain (if and only if c

2 + �2� < 1) by straightforward manipulation:

�2 =
(1 + c)!2

(1� c)(1� c2 � �2�) ;

and the proof is completed.

In the next section we will show how the above results can be used to derive �� when � > t�k1, that

is when we have variable coe¢ cients.

A 3.2. Time Varying Case

Before proceeding further, some additional notation is required.

Set t+ r � k = t� k2. Thus k = r + k2. Since � = t+ r, we also have: � � k = t� k2.

Notation 5 i) Denote the time varying coe¢ cient matrices in the forecast error expansion (see Theorem

1 in the main body of the paper), that is the Green Matrices, by G(� ; � � l). In other words, G(� ; � � l)

are given by

G(� ; � � l) =

8<:
J for l = 0;

�`�11 (�1J+ Z1) for l = 1; : : : ; k1 + r;

�k1+r1 �l�k1�r�12 (�2J+ Z) for l = k1 + r + 1; : : : ; k2 + r � 1;

ii) In the sequel, for convenience and ease of exposition, we will use the notation

V(� ; � � l) = G
2(� ; � � l); (31)

that is, V(� ; � � l) = [vij(� ; � � l)]i;j=1;:::;4 is a time varying square matrix of order 4.

Notation 6 i) Henceforward we will make use of the notation: �(� ; � � k) = �k1+r1 �k2�k12

ii) For notational ease we will set

�(� ; � � k) = [�(� ; � � k)�2]

2G+ [�(� ; � � k)Z]
2: (32)

In other words, �(� ; � � k) = [�ij(� ; � � k)]i;j=1;:::;4 is a time varying square matrix of order 4.

In the following theorem we make use of the two notations above.

Theorem 4 
� , that is vec form of the covariance matrix of fy�g, for � = t+ r, is given by


� =

k2+r�1X
l=0

V(� ; � � l)s��l +�(� ; � � k)s; (33)

where the summation term coincides with the vec form of the Var[FE(y� jF��k )], the second term on

the right-hand side of eq. (33) concur with the vec form of the Var[E(y� jF��k )], and s has been derived

in subsection 7, see eqs. (28) and (29), and eq. (30) in theorem 3.
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Proof. Theorem 1 in the main body of the paper implies that

�� = Var[E(y� jF��k )] +Var[FE(y� jF��k )];

or equivalently, by applying the vec operator


� = V ecfVar[E(y� jF��k )]g+ V ecfVar[FE(y� jF��k )]g: (34)

It remains to be shown that the �rst(second) term on the right-hand side of the above equation is equal

to the �rst(second) term on the right-hand side of eq. (33). Utilizing notation 5(i) the forecast error (see

theorem 1 in the paper), for � > t� k1, can be written as

FE(y� jF��k ) = J"�+
k2+r�1X
`=1

G(� ; � � l)"��`:

In view of the above equation the covariance matrix of the forecast error is given by

Var[FE(y� jF��k )] =
k2+r�1X
l=0

G(� ; � � l)���lG0(� ; � � l):

By applying the vec operator we obtain (in view of notation 5(ii))

V ecfVar[FE(y� jF��k )]g =
k2+r�1X
l=0

V(� ; � � l)s��l: (35)

Next we will make use of the notation 6(i) to write the optimal linear predictor in theorem 1 in the main

body of the paper, for � > t� k1, as

E(y� jF��k ) = �(� ; � � k)(�y��k + Z"��k):

Accordingly, its covariance matrix is given by

Var[E(y� jF��k )] = �(� ; � � k)(�2��02 + Z�Z0)�0(� ; � � k):

Next we use the vec operator to get

V ecfVar[E(y� jF��k )]g = [�(� ; � � k)�2]

2
 + [�(� ; � � k)Z]
2s

(by virtue of eq. (26)) =
�
[�(� ; � � k)�2]


2G+ [�(� ; � � k)Z]
2
	
s

(on account of eq. (32) ) = �(� ; � � k)s: (36)

By virtue of eqs. (34), (35) and (36) it follows that


� =

k2+r�1X
l=0

V(� ; � � l)s��l +�(� ; � � k)s;

as required.

The Time Varying Second Moment
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Lastly, we need to obtain s��l. We will consider the two cases 1 and 2. We recall that for the second

case, that is the case with no asymmetries, where � = 2 and 
(�) = 0 for all � , s� becomes (see eq. (29))

s�=(�1� 0 0 �2��)
0: (37)

To proceed we introduce the following notations.

Notation 7 For convenience of presentation we will

i) set p = k2 + r � 1,

ii) use the notation

c(�) = �21� +

pX
l=1

v41(� ; � � l)�1;��l + �41(� ; � � k)�1 + �44(� ; � � k)��2 (38)

(suppressing the dependence of c(�) on k),

iii) set

�l(�) = �v44(� ; � � l)

(we recall that vij(� ; � � l) and �ij(� ; � � k) are given in notations 5(ii) and 6(ii), respectively; see eqs.

(31) and (32)).

Proposition 5 The time varying second moment of �2� , that is �2� , when � = 2 and 
(�) = 0 for all � ,

obeys a time varying di¤erence (TV-DE) equation of order p with initial values �2 as follows

�2� = c(�) +

pX
l=1

�l(�)�2;��l: (39)

Proof. Observe that the fourth element of 
� in eq. (33) is �2� � �21� and reiterate that the elements in

the fourth row of V(� ; � � l) are denoted as v4j(� ; � � l). Consequently, by virtue of eqs. (33) and (37)

�2� is given by

�2� = �
2
1�+

k2+r�1X
l=1

v41(� ; ��l)�1;��l+�41(� ; ��k)�1+�44(� ; ��k)��2+�
k2+r�1X
l=1

v44(� ; ��l)�2;��l: (40)

In view of notation 7, �2� in eq. (40) can be written as

�2� = c(�) +

pX
l=1

�l(�)�2;��l;

as required.

The solution of the TV-DE in eq. (39) can be derived by applying the methodology recently introduced

in Karanasos et al. (2022).

Set s = t� k2. For every pair (� ; s) 2 Z2 such that � � s � 1 the principal matrix associated with the

TV-DE in eq. (39), is de�ned by
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��;s =

26666666666666664

�1(s+ 1) �1

�2(s+ 2) �1(s+ 2)
. . .

...
...

. . .
. . .

�p(s+ p) �p�1(s+ p)
. . .

. . .
. . .

�p(s+ p+ 1)
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

�p(� � 1) �p�1(� � 1) � � � �1(� � 1) �1
�p(�) � � � �2(�) �1(�)

37777777777777775
; (41)

here and in what follows empty spaces in a matrix have to be replaced by zeros. �t;s is a lower Hessenberg

matrix of order k (for a discussion of Hessenberg matrices, see Karanasos et al., 2022). It is also a banded

matrix with total bandwidth p+1 (the number of its non-zero diagonals, i.e., the diagonals whose elements

are not all identically zero), upper bandwidth 1 (the number of its non-zero super-diagonals), and lower

bandwidth p�1 (the number of its non-zero sub-diagonals). In particular, the elements of �t;s are: (�1)

occupying the entries of the superdiagonal, the values of the �rst autoregressive coe¢ cient �1(�) (from

time s+1 to time t), occupying the entries of the main diagonal, the values of the (1+r)-th autoregressive

coe¢ cient �1+r(�) for r = 1; 2; : : : ; p� 1 (from time s+1+ r to time t), occupying the entries of the r-th

sub-diagonal, and zero entries elsewhere. It is clear that for p � k, �t;s is a full lower Hessenberg matrix.

For every pair (� ; s) 2 Z2 with s < � , the principal determinant associated with eq. (41) is given by:

�(� ; s) = det(��;s): (42)

Formally �(� ; s) is a lower Hessenbergian (determinant of a lower Hessenberg matrix; for details on

Hessenbergians see, Karanasos et al. 2022). We further extend the de�nition of �(� ; s) so as to be de�ned

over Z2 by assigning the initial conditions:

�(� ; s) =

�
1 if � = s
0 if � < s:

(43)

For the theorem below the following notation is employed:

�(m)(� ; s) =

p+1�mX
n=1

�m�1+n(s+ n)�(� ; s+ n): (44)

The results on TV-DE equations in Karanasos et al. (2022), see theorem in their paper, are applied

herein to obtain in the following theorem an equivalent explicit representation of the second moment

process �2� in eq. (39) in terms of the prescribed variable: �2s = �2 (see eq. (30)).

Theorem 5 An equivalent explicit representation of �2� in eq. (39) in terms of the prescribed variable

�2 for any s 2 Z and � 2 Zs+1�p such that s < � is given by:

�2� = �2

pX
m=1

�(m)(� ; s) +
�X

l=s+1

�(� ; l)c(l); (45)

where c(l), �(� ; l) and �(m)(� ; s) are given in eqs. (38), (42)-(43) and (44), respectively.
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Next we will consider case 1, where � = 1 and 
(�) 6= 0 for all � .

Theorem 6 The time varying second moment of �2� , that is �2� , when � = 1 and 
(�) 6= 0 for all � ,

obeys a time varying di¤erence (TV-DE) equation of order p (with initial values �2) given by eq. (39)

where c(�) and �l(�) are given by

c(�) = �21� +

pX
l=1

�2f�41(� ; � � k) + e�[�42(� ; � � k) + �43(� ; � � k)] + ��44(� ; � � k)g
�l(�) = v41(� ; � � l) + e�(� � l)[v42(� ; � � l) + v43(� ; � � l)] + �(� � l)v44(� ; � � l):

An equivalent explicit representation of �2� in eq. (39) in terms of the prescribed variable �2 for any

s 2 Z and � 2 Zs+1�p such that s < � is given by eq. (45).

We skip the proof of theorem 6, which follows the same steps as the proofs of proposition 5 and

theorem 5.

APPENDIX 4. Second-Order Persistence

In the following, we suggest a time varying second-order (or variance) persistence measure that is able

to take into account the presence of breaks and to distinguish between the e¤ects of a mean shock and a

volatility shock on the level and conditional variance respectively. Fiorentini and Sentana (1998) argue

that any reasonable measure of shock persistence should be based on the IRFs. For a univariate process

xt with i.i.d errors, et, they de�ne the persistence of a shock et on xt as P (xt jet ) = Var(xt)=Var(et).

Clearly P (xt jet ) will take its minimum value of one if xt is white noise and it will not exist (will be

in�nite) for an I(1), process.

A.4.1 Orthogonal Shocks

Recall that in general the shocks "t and vt will be correlated with covariance matrix �� (see eq. (4) in

the main body of the paper). Next, we de�ne the vector e"� with two uncorrelated white noise shocks ~"t
and ~vt with variances equal to one. The relation between the original shocks and the orthogonal shocks

is given by

"� = e��e"� ;
where e�� =  p

�"� 0

�"v;�
p
�v�

p
�v�
q
1� �2"v;�

!
: (46)

It is straightforward to show that ��=e�� e�0� , which, by applying the vec operator, implies that
s�=e�
2� vec(I):
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In view of eq. (46) the lower triangular matrix e�
2� is given by

e�
2� =

0BBBBB@
�"� 0 0 0

�"v;�
q
�"��v� (1� �2"v;� ) 0 0

�"v;� 0
q
�"��v� (1� �2"v;� ) 0

�v��
2
"v;� �"v;��v�

q
1� �2"v;� �"v;��v�

q
1� �2"v;� �v� (1� �2"v;� )

1CCCCCA : (47)

Next we will present e�� and e�
2� for the two cases 1 and 2.

Case 3 When � = 2 and 
 = 0, then e�� is a diagonal matrix given by:
e�� = � p

�1� 0
0

p
�2��

�
(coincides with

p
�� . We recall that �1� has been derived in Section 3.2 in the main body of the paper

and �2� is given in eq. (45). Accordingly, e�
2� is given by

e�
2� = diag(�1
p
�1�2�

p
�1�2� �2�): (48)

Case 4 When � = 1 and 
 6= 0, e�� becomes
e�� = p�2� � 1 0e�(�) p

�(�)� e�(�)2
�
;

and, correspondingly:

e�
2� = �2�

0BB@
1 0 0 0e�(�) p

�(�)� e�(�)2 0 0e�(�) 0
p
�(�)� e�(�)2 0e�(�)2 e�(�)p�(�)� e�(�)2 e�(�)p�(�)� e�(�)2 �(�)� e�(�)2

1CCA : (49)

A4.2 Time Invariant Case

Next we will examine the case with constant coe¢ cients. We reiterate that when the coe¢ cients are

constant 
 is presented in theorem 2.

Theorem 7 The second-order measure of persistence, that is Var(y� ), for � � t� k2, is decomposed in

the persistence of the two orthogonal shocks, e"t and evt, as follows
Var(y� ) = P (V ar)(y� je" ) + P (V ar)(y� jev ); (50)

where

P (V ar)(y� je" ) = g11�" + (g12 + g13)�"v + g14�v�
2
"v;

P (V ar)(y� jev ) = g14�v(1� �2"v):
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The superscript is used to distinguish the second-order measures of persistence from the �rst-order

measures, see Section 3.3 in the main body of the paper. Hereafter for notational ease we will drop the

superscript. Notice that when the two shocks are uncorrelated, P (y� je" ) and P (y� jev ) in eq. (50) reduce
to

P (y� je" ) = g11�", P (y� jev ) = g14�v.
Proof. Replacing s in eq. (26) by e�
2vec(I), on account of eq. (47) and using straightforward matrix
algebra we obtain the �rst element of 
, that is Var(y� ), for � � t� k2, as follows:

Var(y� ) = g11�" + (g12 + g13)�"v + g14�v�2"v| {z }
P (y� je" )

+ g14�v(1� �2"v)| {z }
P (y� jev )

;

and the proof is completed.

Next we will examine the two special cases 1 and 2.

Proposition 6 When � = 2 and 
 = 0, then

P (y� je" ) = g11�1, P (y� jev ) = g14�2�:
When � = 1 and 
 6= 0, then

P (y� je" ) = �2fg11 + e�[(g12 + g13) + g14e�]g, P (y� jev ) = g14�2(�� e�2):
The proof is easy and therefore is omitted.

A4.3 Time Varying Case

We reiterate that when the coe¢ cients are variable 
� is derived in theorem 4.

Theorem 8 The second-order measure of persistence, that is Var(y� ), for � > t� k1, is decomposed in

the persistence of the two orthogonal shocks, e"t and evt, as follows
Var(y� ) = P (y� je" ) + P (y� jev );

where

P (y� je" ) =

k2+r�1X
l=0

[v11(� ; � � l)�";��l + (v12(� ; � � l) + v13(� ; � � l))�"v;��l + v14(� ; � � l)�v;��l�2"v;��l]

+[�11(� ; � � k)�" + (�12(� ; � � k) + �13(� ; � � k))�"v + �14(� ; � � k)�v�2"v]; (51)

P (y� jev ) =

k2+r�1X
l=0

v14(� ; � � l)�v;��l(1� �2"v;��l) + �14(� ; � � k)�v(1� �2"v): (52)

Proof. Replacing in eq. (33) s��l by e�
2��lvec(I) we obtain

� =

k2+r�1X
l=0

V(� ; � � l)e�
2��lvec(I) +�(� ; � � k)e�
2vec(I): (53)
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On account of eqs. (31), (32), and (47), using straightforward matrix algebra the �rst element of 
� ,

that is Var(y� ), for � > t� k1, is given by

Var(y� ) = P (y� je" ) + P (y� jev );
where P (y� je" ) and P (y� jev ) are de�ned in eqs. (51) and (52), respectively, and the proof is completed.
In the following proposition we will present the second-order persistence of the two orthogonal shocks,e"t and evt, that is P (y� je" ) and P (y� jev ), respectively, for the two cases 3 and 4.

Proposition 7 Let � = 2 and 
 = 0. Then

P (y� j" ) =

k2+r�1X
l=0

v11(� ; � � l)�1;��l + �11(� ; � � k)�1;

P (y� jv ) = k

(
k2+r�1X
l=0

v14(� ; � � l)�2;��l + �14(� ; � � k)�2

)
:

When � = 1 and 
 6= 0, P (y� je" ) and P (y� jev ) are given by
P (y� je" ) =

k2+r�1X
l=0

�2;��lfv11(� ; � � l) + e�(� � l)[(v12(� ; � � l) + v13(� ; � � l) + v14(� ; � � l)e�(� � l)]g
+�2f�11(� ; � � k) + e�[�12(� ; � � k) + �13(� ; � � k) + �14(� ; � � k)e�]g;

P (y� jev ) =

k2+r�1X
l=0

v14(� ; � � l)[�(� � l)� e�(� � l)2] + �14(� ; � � k)(�� e�2):
In the absence of asymmetries, since e�(�) = 0 for all � , the above expressions reduce to

P (y� je" ) =

k2+r�1X
l=0

�2;��lv11(� ; � � l) + �2�11(� ; � � k);

P (y� jev ) =

k2+r�1X
l=0

v14(� ; � � l)�(� � l) + �14(� ; � � k)�:

We skip proof of the above proposition (where we make use of eqs. (48) and (49)), which follows the

same steps as the proof of theorem 8.
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