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Abstract 

This study contributes to the literature on energy market risk management and portfolio 

management by examining co-movements between several energy commodities in a portfolio 

context in light of the impact of several types of uncertainty over time and under high, medium, 

and low frequencies. Using of wavelet decomposition analysis, we first investigate the lead-

lag relationship together with the power of the correlation over time between major renewable 

and non-renewable energy indexes and uncertainty indexes. Second, we explore the 

contribution of uncertainty to the energy portfolio. Our procedure reveals that a dependent 

relationship generally exists between energy returns and changes in uncertainty. The risks of 

clean energy and crude oil returns are more sensitive to financial uncertainties, whereas 

investing in GAS markets offers market diversification opportunities during periods of energy 

uncertainty.   
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1. Introduction 

In recent years, investing in the energy markets has been a notable part of the lifeblood in 

production process and, thus, in the world’s economic systems and social development. This 

promising awareness of the role of the energy sector in economic growth, firms’ plans and 

household expenditure have stimulated investors’ enthusiasm in the capital markets (Liu et al., 

2019; Narayan et al., 2017; Aloui et al., 2012). However, the short- and long-term relationship 

between energy market prices and their economic implications for financial market participants 

remains a perennial concern. This concern stems from the fact that energy prices cannot be 

fully explained in the framework of supply and demand because the driving factors behind the 

energy market are complex and diversified (Ji et al., 2018; Mellios et al., 2016 among others). 

Broadly speaking, it is extremely difficult to ignore the existence of extreme risks because to 

uncertainty has several sources, including turbulent financial markets (Balcilar et al. 2016), 

climate change, periodical changes in the world economy (Baker et al., 2016) and geopolitical 

uncertainty (Aloui et al., 2016). Above all, much of the instability in energy investment returns 

may stem from the heavy capital demand made by energy projects, the long term nature of their 

production and the long period of cost payback (Balcilar et al., 2017; Bilgin et al, 2015; Kang 

et al., 2014). These have sharply increased the difficulty of making energy investment 

decisions. 

From this viewpoint, several studies have documented that increased volatility in energy prices 

due to high volatility at the level of uncertainty greatly hamper the stability of the financial 

system and may even trigger systemic risk in the global financial markets (Mensi et al., 2017; 

Joëts, 2014). The complexity of these volatile energy prices was amplified when the global 

financial crisis broke in 2008.According to the work of Zhang (2017), among others, the 

consequences of this crisis not only exerted a significant impact on the energy market situation 

but also greatly influenced the expectations of energy market investors. These particular data 

therefore add tremendous challenges to the task for energy investors of identifying an 

appropriate energy investment scheme. 

At this juncture, it must be pointed out that the above situation impelled investors and portfolio 

managers to seek alternative ways of diversifying their portfolios and reducing risk. Such 

diversification can be obtained by considering several energy commodities in the same 

portfolio. In the literature, theoretical models explaining this form of energy portfolio 
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diversification are based on multiple equilibria, endogenous-liquidity shocks causing a 

portfolio reshuffling and changes in exchange rate regimes, investor psychology, and capital 

market liquidity. For example, the price fluctuations for fossil energy can exert a powerful 

influence on the development of the renewable energy sector; they are especially relevant in 

capital markets to the level of investment in renewable energy and its returns. By contrast, the 

higher cost of developing forms of renewable energy can seem a sizeable threat when the prices 

of fossil energy are low. Realigning the weightings of these portfolio assets causes a sell-off of 

certain asset classes, which in turn lowers asset prices in assets not affected by the initial crisis. 

Hence, several studies have investigated the effects of diversification on energy portfolios 

(Francés et al., 2013; Muñozet al., 2009; Huang and Wu, 2008, to name a few). Of note is the 

seminal paper of González-Pedraz et al. (2014), who begin by considering oil, gas, coal, and 

electricity in a portfolio context to evaluate tail risk measures for the portfolio’s profit-and-loss 

distribution. 

To better understand the mechanisms of the dynamic relationship between uncertainties and 

the movement of energy prices, a number of authors have considered the effect of extreme 

uncertainty on energy price returns. In this regard, Jurado et al. (2015) argue that the volatility 

of the indicator rises when the overall economy is slowing down, that is, almost every indicator 

of uncertainty appears to be countercyclical (see also, Barrero et al. 2017; Baker et al. 2016). 

Thus, recent investigators (e.g. Lucheroni and Mari, 2017; Ji et al., 2018; Ma et al., 2019) report 

substantial benefits from including the measurement of uncertainties when considering 

traditional energy portfolios. 

A number of authors have considered the effects of both short-term and long-term components 

of various uncertainties measurements. As noted by Nalebuff and Scharfstein (1987), the 

economic cycle is not constant over time among asset returns and can generate asymmetric 

information. This is further supported in the seminal work of Barrero et al. (2017), where the 

authors emphasise that investing in the energy market (particularly in fossil fuels) is more 

sensitive to short-term economic uncertainty, while policy uncertainty is particularly related to 

long-term uncertainty. Meleet al. (2015) (see also Adrangi et al. (2019), among others) draws 

our attention to the distinctive nature of financial uncertainties often observed in portfolio risk 

management. In this regard, Alouiet al. (2016) and Chen and Kettunen (2017) identify that 

higher economic and financial uncertainty measurement has not always increased oil returns. 
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This effective co-movement between uncertainty and energy prices in a portfolio setting can 

be used determine actual diversification investment opportunities, assess optimal hedging 

strategies, and in the prevention of contagion effects, although little evidence so far has been 

provided to verify the major co-movement of uncertainty on energy prices. What is clear is the 

importance of first considering how several energy commodities in a portfolio context co-move 

with different uncertainties measurements and second, how these co-movements differ in the 

short and long term despite the volatility and interdependence of the energy markets. 

In specific terms, this study contributes to the literature on energy market risk management and 

portfolio management by examining co-movements between several energy commodities in a 

portfolio context and considering the impact of several types of uncertainty over time and under 

high, medium and low frequencies. To this end, the current research addresses the following 

questions, in turn: (i) Is there any extreme value dependence between energy commodities and 

different types of uncertainty? If so, (ii) is the dependence symmetric or asymmetric? Finally, 

(iii) can this dependence contribute to the risk reductions and downside risk reductions of 

extreme uncertainty movement on energy price returns? 

Answering the above questions will contribute to the current literature in three main respects. 

First, we extend the current research by considering financial market and energy market 

uncertainty in a comprehensive analysis of the various diffusion channels through which 

uncertainty influences energy prices. In order to do so, we take two measures of uncertainty, 

namely, the implied volatility index (the VIX, henceforward) as a proxy for global financial 

market uncertainty and the crude oil volatility index (OVX) as a proxy for energy market 

uncertainty. VIX and OVX were chosen in order to compare their distinct influences on both 

fossil (crude oil and GAS) and clean energy prices.  

Second, consensus literature on portfolio management suggests that variations in energy 

seasonal demands influence the time-varying trend of energy prices and that exposure 

association over time provides important information on the risk profile of a portfolio over 

varying horizons (Shao et al., 2015). Accordingly, this paper applies an empirical 

methodological framework based on a wavelet approach to account for the presence of 

potential frequency changes over time. The wavelet method encapsulates both short-term 

speculators and long-term investors whose expectations are time-frequency dependent. The 

multi-resolution decomposition of the wavelet transform allows us to identify spillovers, 

contagion and interdependence (Mensi et al., 2018). 
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Finally, several portfolios (a risk-minimizing portfolio, an equally weighted portfolio, and a 

hedging portfolio) were considered to assess the risk reductions and downside risk reductions 

of extreme uncertainty movement on energy price returns. Of more interest, this study provides 

a new analysis tool for financial investors and risk managers seeking to control their trading 

risks during extreme periods by measuring the value-at-risk (VaR) of energy price returns 

conditional on the VaR of uncertainties at both short-term and long-term frequency. 

The remainder of this study is organized as follows. Section 2 presents an overview of the 

econometric approach. Section 3 presents the data and provides the empirical results. Finally, 

Section 5 concludes the study. 

2. The Econometrics Approach 

Using wavelets is a well-established technique that decomposes a time series into small waves 

which begin at a finite point in time and end at a later finite point in time. A significant 

advantage of this approach is that frequency information can be obtained without losing the 

timescale dimension. Another advantage of wavelet analysis is that it needs no assumptions 

about the data generating process for the return series under investigation. (Insightful 

development of the theory and use of wavelets can be found in Percival and Walden, 2000; 

Gençay et al., 2001). 

A discrete signal of a time series 𝑌𝑌(𝑥𝑥) ∈ ℒ2 on T- dimension can be written as the sum of a 

scaling function ∅(𝑡𝑡) representing the smooth baseline trend and wavelet function Ψ(𝑡𝑡) that 

together account for all deviations from trends, namely:  𝑓𝑓(𝑡𝑡) =  ∑ 𝑆𝑆𝑘𝑘∅𝑘𝑘(𝑡𝑡)𝑘𝑘 + ∑ 𝛼𝛼𝑖𝑖Ψ𝑖𝑖(𝑡𝑡)𝑇𝑇𝑖𝑖                                               (1) 

From Equation (1), the wavelet function which spans the differences between two adjacent 

spaces can be given as  

𝜓𝜓𝑗𝑗,𝑘𝑘(t) = 2
−𝑗𝑗2𝜓𝜓�2−𝑗𝑗𝑡𝑡 − 𝑘𝑘 �2

−𝑝𝑝𝑗𝑗2 ,                                       (2) 

where 𝑗𝑗 = 1, … , 𝐽𝐽  accounts for the resolution level that can capture the smooth components of 

the signal and 𝑘𝑘  represents the applicable scale and translation parameters. 

The orthogonal basis functions in Equation (1) are constructed by translating and dilating the 

wavelet into both time and scale dimensions. The resulting multi-scale decomposition can be 

simplified as 
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                   𝑓𝑓(𝑡𝑡) = 𝑆𝑆(𝑥𝑥)𝑗𝑗 + 𝐷𝐷(𝑥𝑥)𝑗𝑗 + 𝐷𝐷(𝑥𝑥)𝑗𝑗−1 +⋯+ 𝐷𝐷(𝑥𝑥)𝑗𝑗 + ⋯+ 𝐷𝐷(𝑥𝑥)1                  (3) 

where 𝐷𝐷𝑗𝑗  is the 𝑗𝑗th level wavelet and 𝑆𝑆𝐽𝐽present the aggregated sum of variations at each detail 

scale. For the purpose of this study, we used a compact Daubechies function of minimal 

asymmetry filter of length eight [LA(8), hereafter] to generate uncorrelated coefficients across 

scales. Following the seminal work in the field, this level of decomposition leads to six levels 

of wavelet scales D_i,∀ i=1,…,6 representing the variations caused by shocks occurring on a 

timescale of 2^i days. Moreover, S_6 is the residue of the original signal after subtracting D1, 

D2, D3, D4, D5 and D6 in turn. 

The co-movement between two-time series can then be examined using the Maximal Overlap 

Transformation (MOTWT). Accordingly, for a defined stochastic process 𝑊𝑊�𝑗𝑗,𝑡𝑡 ≃∑ ℎ𝑗𝑗,𝑙𝑙 𝑋𝑋𝑡𝑡−1𝐿𝐿𝑗𝑗−1𝑙𝑙=0 ,  the time-dependent wavelet variance at scale(𝜆𝜆𝑗𝑗) of the signal for the obtained 

series 𝑋𝑋 =  𝑥𝑥,𝑦𝑦 is given by 

                                                     𝜎𝜎𝑋𝑋,𝑡𝑡 
2 (𝜆𝜆𝑗𝑗) ≃ 𝑣𝑣𝑣𝑣𝑣𝑣{𝑊𝑊�𝑗𝑗,𝑡𝑡}                                                    (4) 

 In addition, the wavelet covariance is defined as  

                                               𝜎𝜎𝑋𝑋,𝑡𝑡 (𝜆𝜆𝑗𝑗) ≃ 𝐶𝐶𝐶𝐶𝑣𝑣{𝑊𝑊�𝑋𝑋,𝑗𝑗,𝑡𝑡,𝑊𝑊�𝑋𝑋,𝑗𝑗,𝑡𝑡}                                                        (5) 

the wavelet correlation at scale (𝜆𝜆𝑗𝑗)  can be, then, estimated as  

                                                       𝜌𝜌�𝑋𝑋𝑋𝑋(𝜆𝜆𝐽𝐽) ≡ 𝜎𝜎𝑋𝑋,𝑡𝑡 (𝜆𝜆𝑗𝑗)𝜎𝜎𝑋𝑋 �𝜆𝜆𝑗𝑗�𝜎𝜎𝑌𝑌�𝜆𝜆𝑗𝑗�                                                              (6) 

To account for the synchronicity of the series at certain periods and across certain ranges of 

time, the concepts of cross-wavelet analysis is adopted. This transform of two time series 

(𝑥𝑥𝑡𝑡)(with their respective wavelet transforms (𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊. 𝑥𝑥)) and (𝑦𝑦𝑡𝑡)(with its own wavelet 

transforms (𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊.𝑦𝑦)) decomposes the Fourier co- and quadrature-spectra in the time-scale 

domain such that 

                                 𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊. 𝑥𝑥𝑦𝑦(𝜏𝜏, 𝑠𝑠) =
1𝑠𝑠  .𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊. 𝑥𝑥 (𝜏𝜏, 𝑠𝑠).𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊.𝑦𝑦∗(𝜏𝜏, 𝑠𝑠)                         (7) 

The so-called phase difference of 𝑥𝑥 over 𝑦𝑦 at each localizing time origin and scale can be 

formulated as  

                                       𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑊𝑊(𝜏𝜏, 𝑠𝑠) = 𝐴𝐴𝑣𝑣𝐴𝐴(𝑊𝑊𝑣𝑣𝑣𝑣𝑊𝑊. 𝑥𝑥𝑦𝑦(𝜏𝜏, 𝑠𝑠))                                         (8) 



7 

 

 

An absolute value less (greater) than 
𝜋𝜋2 indicates that the two series move in phase (anti-phase) 

referring to instantaneous time as the time origin and at the frequency (or period) in question, 

while the sign of the phase difference shows which series is the leading one in this relationship. 

3. Data, Empirical Results and Discussion  

We consider the daily data for the S&P 500 Global Clean Energy Index (CEX), the crude oil 

prices (OIL) and the natural gas prices (GAS) covering the sample period from May 10, 2007 

to April 13, 2017 (a total of 2591 observations). In order to capture the uncertainty, we consider 

the CBOE’s Implied Volatility Index (VIX) as a proxy for financial market uncertainty and the 

CBOE’s Crude Oil Volatility Index (OVX) as a proxy for energy market uncertainty. The 

return series for the energy indices are computed by taking the logarithm difference of the 

energy prices and uncertainty changes as measured by the difference in the uncertainty 

indicators. 

3.1 Cross-Wavelet Transform 

We use the cross-wavelet transform to investigate the dynamics of co-movement (leads-lags 

relationships) between energy commodity returns and both energy and financial uncertainties 

measurements, with respect to time and frequencies. As shown in Figures 1 and 2, the left-hand 

horizontal axis is transformed to show the number of days taken for the scale to move 

from low to high wavelengths. 

For ease of interpretation, the phase difference between studied series is indicated by arrows. 

More precisely, arrows pointing to the right and down (up) signify the leading (lagging) of the 

uncertainty index. By contrast, arrows to the left and down imply that the uncertainty index is 

lagging with an anti-phase series and arrows to the left and up track the uncertainty index when 

it is leading without-phase. It is worth noting that in-phase means that two series are affecting 

each other cyclically, while out-of-phase or anti-phase indicates that the studied series are 

affecting each other anti-cyclically. 

An analysis of the results obtained from the wavelet coherence in Figure 1 clarifies the lead 

and lag relationships between the renewable and non-renewable energy commodities under 

consideration and the energy uncertainty index. Interestingly, the time horizon of interest is 

quite an important feature when it comes to evaluating the relationship between chosen 

variables. 
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During the period 2011 to 2019, the co-movement between the renewable energy index and 

energy uncertainty was most probably concentrated in the long-term scale band. To be specific, 

when the time scale is around 8-16 days, the arrows point to the left and up, indicating that the 

change in energy uncertainty leads a change in the clean energy index without their having an 

anti-cyclical effect on each other. When it comes to non-renewable energy, the index is 

surprisingly different: on the one hand, the energy uncertainty lags the change in the crude oil 

index with an anti-phase at around the 8-16 day period, since the arrows point to the left and 

down. On the other, the change in energy uncertainty leads the change in the GAS index 

without any anti-cyclical effect on either side. In periods longer than 32 days, the picture 

changes. There the arrows point to the left and down, indicating that the energy uncertainty is 

lagging the change in the clean energy index with anti-phase. Interestingly, the change in 

energy uncertainty leads the change in the crude oil index when the time scale is longer, 

whereas the energy uncertainty leads the change in the GAS index with anti-phase. 

The sensitivity of the energy commodities market to energy uncertainty makes it highly 

volatile, between 2020M2 and 2021M1, with arrows pointing left and up at around the 2–4 and 

4-8 day time scales, suggesting a leading relationship without phase in the case of the clean 

energy and GAS indexes and lagging with anti-phase in the case of the crude oil index since 

the arrows point to the left and down. This lead-lag relation is interesting when the time is 

greater because the arrows are in the anti-phase, indicating that the clean energy and energy 

uncertainty are out of phase, while the arrows indicating the oil index and energy uncertainty 

are in phase. The arrows point right and up, indicating that the energy uncertainty lags the GAS 

returns. 

 

 

 



9 

 

 

 

 

 

Figure 1 Cross Wavelet Transform over Energy uncertainty 

 

Figure 1a OIL ~ ENERGY UNCERTAINTY   

Figure 1b GAS ~ ENERGY UNCERTAINTY  

Figure 1c CEX ~ ENERGY UNCERTAINTY 
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The evolution over a longer scale from financial uncertainty to commodities resembles that 

observed for energy uncertainty but is more stable (see Figure 2), with the arrows pointing left 

and down, corresponding to the period 2011 M01–2019 M10 on an 8-16 day scale fluctuation, 

and indicating that financial uncertainty lags the CEX and GAS indices with a phase shift. 

However, in the case of crude oil, the arrows point to the left and up, indicating that the 

financial shock leads to oil returns without phase. The interconnectedness in the system is much 

stronger in the long-run scale (32-64 and 64-128), with the arrows suggesting that financial 

shock leads to a change in clean energy prices. By contrast, the arrows point to the left and 

down, indicating that the financial shock lags both fossil fuels returns.   

Turning our attention to the end of period corresponding to 2020 M01–2021 M01, it is apparent 

from Figure 2 that the behaviour patterns of the energy return are diverse in terms of response 

to the energy uncertainty index. It is clear that the financial uncertainty leads to a change in the 

short-term time scale for crude oil (around 2–8 days) since the arrows point to the right and 

down. Similarly, the shock leads the GAS change but without phase. However, in the case of 

clean energy, the shocks are lagging with the anti-phase shift. In the long-term scale, at the 

scale of 32 days and longer, the arrows are in anti-phase, indicating that the financial shock is 

out of phase with the GAS returns, while the arrows point to right and up suggesting that the 

shock lags the clean energy prices. The picture is different in the case of the GAS return, in 

which the arrows are in anti-phase. 

In sum, the results from the cross-wavelet transform of returns connectedness seem to 

complement nicely the comments in the literature. The wavelet results suggest that the energy 

market returns were influenced strongly during the aggregate demand-side shocks, such as 

periods of financial turmoil (the COVID-19 crisis; the tussle between Russia and Saudi 

Arabia4). 

 

 

 

 

 
4 On 6th March 2020, Russia refused to comply with the decision to cut oil supplies made at the OPEC summit in 
Vienna on March 5. In response, on 8th March Saudi Arabia announced oil production increases and price 
discounts ranging from $6 to $8 per barrel for European and Asian customers. 
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Figure 2 Cross Wavelet Transform over Financial uncertainty 

Figure 1a OIL ~ Financial  UNCERTAINTY  

Figure 2b GAS ~ Financial 

Figure 2c CEX ~ Financial UNCERTAINTY 
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3.2 Dynamic Wavelet Correlation  

The analysis in the previous sections provides several insights into the leads-lags structure 

between renewable and non-renewable energy commodities returns and uncertainty indexes. 

In particular, the analysis in Section 3.1 provides an answer to the question: In what ways are 

the leads-lags of the x-energy return type conditional on the y-uncertainty index changes? In 

this section we focus on the question: How does the power of the correlation change over time?  

First, to answer the former question, we estimate the time varying correlation between the 

renewable and non-renewable energy commodities returns and the uncertainty indexes, using 

the time-localized multiple regression model. These correlation patterns are presented in a 

time-frequency domain on a scale-by-scale basis. Therefore, in Figures 1 and 2 the correlation 

coefficients are calculated daily for each pair of energy commodities returns and the uncertainty 

index. For ease of interpretation, the heat maps indicate the increasing strength of the 

correlation as they move from blue (lowest correlation) to red (highest correlation). 

In Figure 1 there is a clear difference in the correlation patterns with some markets 

performing better than others. For example, the renewable energy market in some specific 

periods appears to be less sensitive to energy uncertainty changes over a long horizon than the 

non-renewable one, since the correlation is roughly between 0.2 for CEX with uncertainty 

(Figure 1a), while the magnitude of the correlation is around 0.35 (Figure 1a and 1b). Note, 

however, that a contagion effect emerges at the pick of the Covid-19 outbreak after January 

2020, as highlighted by the red colour in Figure 1, because positive high correlation was 

exhibited at this time.  

Looking now at situations of financial uncertainty, the trajectories seem to display a similar 

trend in all cases, showing slight differences in magnitude across the markets. In specific, the 

correlation in the case of crude oil is the greatest of all the three energy return risks, while the 

magnitude for the GAS is always the smallest. More interestingly, in Figure 2, f the impact of 

the COVID global crisis is clearly evident rom January 2020 onward. We observe that the risk 

measures are different, although the clean energy and oil sources are more strongly influenced 

by financial uncertainties than by energy uncertainty. 
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3.3 Implications for the Energy Portfolio 

Having discussed the lead-lag relationship as well as the power of the correlation over 

time, we are now in a position to answer the question: What are the implications for risk 

management and portfolio construction strategies?  

Following Fernández-Rodríguez et al. (2016) we investigate the impact of uncertainty on 

the energy portfolio based on Wavelet Value at Risk (WVaR), which is a robust market-based 

measure of systemic risk across energy markets of differing length 

The (1− 𝛼𝛼)% value at risk (VaR) of an equally weighted energy portfolio of 𝑘𝑘 indexes at 

the 𝑗𝑗-scale components can be given as5 

𝑉𝑉𝑣𝑣𝑅𝑅𝜏𝜏𝑗𝑗(𝛼𝛼) = 𝑉𝑉01(𝛼𝛼) �(𝜎𝜎𝑚𝑚2 �𝜏𝜏𝑗𝑗� �∑ 𝛽𝛽𝑖𝑖�𝜏𝜏𝑗𝑗�𝑘𝑘𝑘𝑘1 �2 +
1𝑘𝑘2∑ 𝜎𝜎𝜖𝜖𝑖𝑖2𝑘𝑘1 (𝜏𝜏𝑗𝑗)                       (9)  

where 𝜔𝜔 is a vector of portfolio weights, 𝑉𝑉0 is the initial value of the portfolio, 𝑉𝑉01(𝛼𝛼)  ≡𝜙𝜙−1(1− 𝛼𝛼), and 𝜙𝜙(∙) is the cumulative distribution function of the standard normal. 

According to Gençay et al. (2003), the wavelet-beta estimator for asset 𝑖𝑖, at scale 𝑗𝑗, can be 

defined as 

𝛽̂𝛽�𝜏𝜏𝑗𝑗� =
𝜈̂𝜈𝑅𝑅𝑗𝑗𝑅𝑅𝑚𝑚(𝜏𝜏𝑗𝑗)𝜈̂𝜈2𝑅𝑅𝑚𝑚(𝜏𝜏𝑗𝑗)  

where (𝜈̂𝜈2𝑅𝑅𝑚𝑚(𝜏𝜏𝑗𝑗)) and 𝜈̂𝜈𝑅𝑅𝑗𝑗𝑅𝑅𝑚𝑚(𝜏𝜏𝑗𝑗) are the wavelet variance and wavelet covariance of the 

portfolio at scale 𝑗𝑗, respectively. 

The contribution of 𝑗𝑗-scale on total value at risk can then be given as  

                                
(𝜎𝜎𝑚𝑚2 �𝜏𝜏𝑗𝑗��∑ 𝛽𝛽𝑖𝑖�𝜏𝜏𝑗𝑗�𝑘𝑘𝑘𝑘1 �2+ 1𝑘𝑘2∑ 𝜎𝜎𝜖𝜖𝑖𝑖2𝑘𝑘1 �𝜏𝜏𝑗𝑗�

(𝜎𝜎𝑚𝑚2 �∑ 𝛽𝛽𝑖𝑖𝑘𝑘𝑘𝑘1 �2+ 1𝑘𝑘2∑ 𝜎𝜎𝜖𝜖𝑖𝑖2𝑘𝑘1 .                                                    (10) 

It is worth noting that we test the contribution of renewable energy in different types of 

portfolio in order to quantify the willingness to hedge against different types of uncertainty 

risk. Table 1 illustrates a 1-day horizon and a 95% confidence level. In specific, Panel A of 

 
5To save space, we mention only the useful equations to our analysis. For in-depth details, interested readers 

may refer to the seminal work of Gençay et al. (2003). 
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Table 1 shows the case of a portfolio containing the non-renewable indexes (GAS and OIL) 

along with the VIX financial uncertainty index. As expected, the value at risk generally 

decreases as the time-scale increases. Second, the contribution to total risk is higher in the 

lower scales. That is to say, potential portfolio losses are greater when the detailed components 

of the data are scrutinised. Finally, the contribution to VaR (CVaR, henceforward) suggests 

that the magnitude of the CVaR for oil is the greatest of all the energy return risks. A possible 

explanation for this may be that, when financial uncertainty changes are considered, the 

extreme oil return risks are greater than those of gas returns at a given time; that is, the oil 

market may be more sensitive to uncertainty changes than the GAS market at certain times. 

It is of interest to compare this figure with that in panel B of Table 1 which explains what 

happens when the renewable energy index is included in the portfolio. In line with the results 

in Section 4.2, we observe that the VaR and CVaR trajectories display similar trends in all 

cases, revealing only slight differences in magnitude across the indexes. That is to say, 

renewable energy returns are less sensitive to extreme uncertainty changes in the financial 

markets. What is interesting about this result is that even in condition of extreme market 

distress, investing in renewable energy may play an important role in balancing portfolios. 

 

Table 1. Optimal portfolio under financial uncertainty  
 D1 D2 D3 D4 D5 D6 

Portfolio 1  

95% VaR  0.31 0.29 0.19 0.11 0.07 0.05 

FU  30.03 22.90 10.40 18.02 8.81 9.64 

OIL 34.48 23.06 16.02 13.09 7.54 5.19 

GAS 29.51 23.80 16.49 10.73 9.75 8.48 

Portfolio 2  

95% VaR  0.27 0.25 0.17 0.11 0.06 0.03 

FU  31.99 24.78 10.65 14.77 8.96 7.99 

OIL 30.23 24.87 14.87 11.03 9.82 8.92 

GAS 26.14 23.16 20.02 11.73 11.17 8.24 

CEX 25.86 22.17 19.67 10.97 11.65 8.86 
The VaR represents the potential loss on a 1-day horizon for a 95% confidence level. (2) The VaR and the 

contribution to VaR at scale j are computed according to Equations (9) and (10), respectively, where scale 1: 2–4 

days, scale 2: 4–8 days, scale 3: 8–16 days, scale 4: 16–32 days, scale 5: 32–64 days, and scale 6: 64–128 days.  

 

Looking at the case of energy uncertainty in portfolio diversification, it appears from Table 

2 that the time horizon under consideration is quite an important feature when it comes to 
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evaluating the performance of energy indexes as portfolio stabilizers in times of energy market 

distress. It can be observed that GAS contributes least to the VaR even when investing in 

renewable energy is considered. This means that renewable energy and oil price returns are 

more sensitive to energy uncertainty changes in the energy markets, that is, increasing 

uncertainty tends to have a negative impact on these price returns. Moreover, the correlation 

patterns change over both the investment horizons and over time.  

 

Table 2. Optimal portfolio under energy uncertainty 

  D1 D2 D3 D4 D5 D6 

Portfolio 3 

95% VaR  0.33 0.27 0.17 0.13 0.05 0.04 

EU  33.01 29.34 24.38 5.15 4.89 2.69 

OIL 34.66 33.76 16.27 6.01 4.03 3.62 

GAS 30.44 29.82 19.96 7.91 5.07 2.88 

Portfolio 4  

95% VaR  0.23 0.18 0.06 0.05 0.02 0.01 

EU  28.78 23.86 20.16 16.39 7.40 3.06 

OIL 32.37 31.52 22.99 7.08 3.07 2.62 

GAS 27.98 24.81 19.63 13.13 6.87 6.98 

CEX 28.74 25.21 19.73 13.27 6.99 6.74 

The VaR represents the potential loss on a 1-day horizon for a 95% confidence level. (2) The VaR and the 

contribution to VaR at scale j are computed according to Equations (9) and (10), respectively, where scale 1: 2–4 

days, scale 2: 4–8 days, scale 3: 8–16 days, scale 4: 16–32 days, scale 5: 32–64 days, and scale 6: 64–128 days. 

 

4. Conclusion and Policy Implications  

The first question in this study was how to determine the value dependence between energy 

commodities and different types of uncertainty. In this regard, the results of wavelet coherence 

show that considering the time horizon is important in evaluating the relationship between 

energy commodities and uncertainty indexes. This importance appears in the changing 

behaviour of the series under study using different time scales. For instance, in periods of 8 – 

16 days the findings show that the energy index leads the clean energy index with an anti-

cyclical effect between them. However, the energy index appears to lag the crude oil index and 

lead the GAS index with anti-cyclical and cyclical effects respectively.  

However, going beyond 32 days, the results show that the renewable energy index leads 

the change in the energy index with anti-phase. With respect to non-renewable energy indexes, 
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the energy index turns to lead both the crude oil and GAS indexes but with an anti-cyclical 

effect on the latter.  

In the case of financial uncertainty, the results show that financial uncertainty lags both 

clean energy and GAS indexes without phase. However, it leads the crude oil index without 

phase. Nonetheless, over a longer period (more than 32 days) this relationship changes:  

financial uncertainty leads the clean energy index. However, it lags both the crude oil and GAS 

indexes.  

To sum up, the results of the lead-lag structure between the series under study confirm the 

presence of asymmetry over time. Moreover, the results show that energy market returns are 

influenced by the crises that occurred during the study period, such as the COVID-19 

pandemic.  

Moving to the dynamic wavelet correlation, the results of the heat map show that the clean 

energy index appears to be less sensitive to changes in energy uncertainty than the crude oil 

and GAS indexes. The case is similar for financial uncertainty with slight differences in the 

magnitude of correlation. Finally, the dynamic wavelet correlation results display a contagion 

effect during the COVD-19 pandemic period (starting in January 2020), thus confirming the 

results of the wavelet coherence analysis.  

 Finally, the findings of contribution to the VaR show that the crude oil index makes a 

greater contribution to the VaR in a portfolio composed of oil and GAS under financial 

uncertainty than the GAS index makes. However, including the clean energy index will 

rebalance such a portfolio because it makes the smallest contribution to the VaR. With regard 

to energy uncertainty, the results show that the GAS index makes the smallest contribution to 

the VaR even when the clean energy index is included in the portfolio.  

The evidence from this study suggests that portfolio managers should consider investing 

in the GAS market to hedge against energy shock. However, they should also consider 

investing in clean energy to hedge against financial shocks.    
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