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Johansen�s (2000) Bartlett correction factor for the LR test of linear restrictions on cointegrated vectors is
derived under the i.i.d. Gaussian assumption for the innovation terms. However, the distribution of most
data relating to �nancial variables are fat-tailed and often skewed, there is therefore a need to examine
small sample inference procedures that require weaker assumptions for the innovation term. This paper
suggests that using the non-parametric bootstrap to approximate a Bartlett-type correction provides a
statistic that does not require speci�cation of the innovation distribution and can be used by applied
econometricians to perform a small sample inference procedure that is less computationally demanding
than it�s analytical counterpart. The procedure involves calculating a number of bootstrap values of
the LR test statistic and estimating the expected value of the test statistic by the average value of the
bootstrapped LR statistic. Simulation results suggest that the inference procedure has good �nite sample
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1 Introduction

The procedure for estimating and testing cointegrating relationships described in Johansen (2006)

is available in virtually all econometric software packages and is widely used in applied research.

Brie�y this method involves maximizing the Gaussian likelihood function and analysing the eigen-

values and eigenvectors found using the reduced rank regression method. Once that the number

of cointegrating vectors has been determined, hypotheses on the structural economic relationships

underlying the long-run model can be tested using the likelihood ratio (LR) test.

Although the LR test of linear restrictions of cointegrating vectors has the correct size asymp-

totically, many studies contain reports that the approximation of the �2 distribution to the �nite

sample distribution of the LR test can be seriously inaccurate see, for example, Haug (2002),

or Gredenho¤ and Jacobson (2001). Broadly speaking, the problem can be described as one of

lacking coherence between the test statistic and its reference distribution. One way of addressing

this problem is to correct the test statistic so that the �nite sample distribution is closer to the

asymptotic distribution. In this respect, early attempts of correcting the test statistic were made

in Podivinsky (1992) and Psaradakis (1994), where small sample corrections based on degrees

of freedom were suggested. More recently, Johansen (2002) proposed a Bartlett type correction

factor for LR statistic and analytically derives the asymptotic expansions needed to calculate the

expectation of the test statistic. Multiplying the unadjusted statistic by a factor derived from an

asymptotic expansion of the expectation of the test provides a closer approximation of the result-

ing adjusted statistic to the �2 distribution, thus reducing the size distortion problem. Simulation

results presented by Johansen (2000) suggests that applying this type of correction to the LR

test statistic dramatically reduces the �nite sample size distortion problem. However, the Bartlett

correction factor is predicated under the assumption of Gaussian innovations. When the innova-

tions are non-normal, the correction factor needs to be modi�ed in order to account for skewness

and kurtosis of the innovations. One way of overcoming such calculations is to use a numerical

approximation in place of the analytical Bartlett correction. The �rst paper that suggested to

calculate such approximation in time series context was the work by Canepa and Godfrey (2007).

In their article the authors proposed computing the Bartlett adjustment for a quasi-LR test us-

ing non-parametric bootstrapping as a simple method to generate a non-normality robust small

sample inference procedure in the context of ARMA models. The Bartlett corrected quasi-LR

test suggested in Canepa and Godfrey (2007) can be used in ARMA models as a misspeci�cation

test or alternatively as model speci�cation procedure. The former case involves testing for the

adequacy of an ARMA model by an over�tting diagnostic check, whereas in the latter case the

inference procedure can be used to test the validity of simpli�cations of an ARMA model. In
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the multivariate context, Canepa (2016) proposed to use the bootstrap to approximate the �nite

sample expectation of the LR test in place of the analytical Bartlett correction in the context of

cointegrated VAR models (see also Hunter, Burke and Canepa, 2017). The author also proved the

consistency of the suggested test under the assumption that in the innovations are independent

and identically distributed (i.i.d.). The results in Canepa (2016) are promising since it was found

that the performance of the bootstrap Bartlett test was less dependent on the values of the pa-

rameters of the data generating process and better able to cope with violations of the Gaussian

assumption about the innovations with respect to the Johansen (2000) Bartlett corrected LR test.

A possible shortcoming of the inference procedure suggested in Canepa (2016) is that the sug-

gested test statistic relies on the i.i.d. assumption. Evidence of violation of this strong assumption

appear in many macroeconomic series, such as aggregate consumption and income, in interest rate

data and in nominal and real price variables; see Sensier and van Dijk (2004). Similarly, it is a

well-known stylized fact that GARCH-type models �t well to stock market returns (see Boswijk

et al., 2016; Harvey et al., 2016; Engle and Rangel, 2008; among others).

Against this background, in this paper we built on Canepa (2016) and investigate if the boot-

strap Bartlett corrected LR test can be used to reduce the size distortion problem in situations

where an analytical solution is di¢ cult or does not work well. If such an application were to

be successful it would have signi�cant practical implications, for several reasons. The bootstrap

Bartlett corrected LR test does not rely on the Gaussian assumption of the innovations, and

this feature may be appealing to the applied worker. Moreover, simulation results indicate that

the correction factor is useful for some parameter values but does not work well for others. As

Johansen points out "the in�uence of the parameters is crucial [.....] There are parameters points

close to the boundary where the order of integration or the number of cointegrating relations

change, and where the correction does not work well" (cf. Johansen, 2000 p.741). Simulation

results in Cavaliere et al. (2015) con�rmed that the performance of test heavily depends on the

parameter space (see also Canepa, 2006; Cavaliere et al., 2020; Andrews and Guggenberger, 2009;

Elliott et al., 2015; Lu, 2016; McCloskey, 2017; Ketz, 2018).

We believe that the dependency on the parameter values may be reduced by computing the

Bartlett adjustment using the non-parametric bootstrap. Because the bootstrap method involves

replacing the unknown cumulative distribution function of the LR test statistic by the empirical

distribution function of the bootstrap distribution of the same test, the resulting inference pro-

cedure may show less sensitivity to the values of the parameters of the data generating process

(DGP ) than a test based on the asymptotic critical values. Computing the bootstrap Bartlett cor-

rection factor is relatively straightforward. Roughly speaking, this procedure involves calculating

a number of bootstrap values of the LR test statistic and estimating the expected value of the test
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statistic by the average value of the bootstrapped LR statistic. The bootstrap Bartlett method was

�rst proposed in Rocke (1989) where hypothesis testing in seemingly unrelated regression models

was considered (see also Jacobson and Larsson, 1999). Rocke�s simulation results showed that the

Bartlett adjustment for the LR test determined using the non-parametric bootstrap was consid-

erably more accurate than the Bartlett adjustment from the second-order asymptotic method of

Rothenberg (1984). In the time series context the idea of using the bootstrap to tackle the prob-

lem of �nite sample biased estimation is also considered in Engsted and Pedersen (2014) where

a bootstrap based bias-correction method is considered as a simple approach to bias-adjustment

in VAR models. The authors show that the bootstrap bias-correction approach yield a large re-

duction in bias compared to OLS estimate and the performance is similar to the analytical bias

formula.

The contribution to the literature of this paper is twofold. First, it provides a "feasible" small

sample correction factor that can easily be used to calculate LR test for linear restriction on the

cointegrating space in situations where the analytical Bartlett correction factor would fail. Sec-

ond, the consistency of the suggested procedure is considered and it is shown that the bootstrap

Bartlett statistic converges weakly in probability to the correct asymptotic distribution. Estab-

lishing the conditions that ensure asymptotic re�nements will be the subject of future research.

However, in his seminal article, Beran (1988) concluded that for asymptotically pivotal statistics

(i.e., statistics for which the limiting distribution does not depend on unknown nuisance para-

meters), the analytical Bartlett adjustment produces an error in rejecting probability of order

O
�
T�3=2

�
. Approximating the �nite sample expectation of the LR test using the bootstrap in-

volves substituting a
p
T consistent estimate of statistic, hence the resulting inference procedure

should have accuracy of the same order.

The performance of the suggested procedure and the analytical Bartlett correction under non-

normality assumption of the innovations are evaluated by Monte Carlo evaluation. Innovation

structures typically found in �nancial data are considered such as fat tailed and conditionally

heteroskedastic (i.e., ARCH and GARCH) innovations. Performance is assessed in terms of the

size and power of the inference procedures under consideration. The performance of the suggested

procedure is compared with the bootstrap p-value test. In general, unlike the Bartlett (1937)

idea that involves replacing the original statistic with a corrected statistic which is closer to the

reference distribution, the bootstrap p-value test involves making the reference distribution closer

to the �nite sample distribution. In the literature it has been shown that in many cases the

bootstrap can be considered as a numerical approximation to analytical calculations of one-term

Edgeworth expansion (see Hall,1992) where the critical values of the limit distribution are replaced

with transformations of critical values obtained from the Edgeworth expansions of the distribution
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function.

This section will close with a brief presentation of the Bartlett correction. The next section

introduces the LR test for linear restrictions on cointegrating space, the Bartlett correction of

Johansen (2000), and the two bootstrap inference procedures. In Section 3, the design of the

Monte Carlo experiment is explained, and in Section 4, the simulation results are reported. In

Section 5 some robustness checks are undertaken. An empirical application is considered in Section

6 and Section 7 contains some concluding remarks.

The Bartlett Correction

The Bartlett correction is based on a simple idea, but can be very e¤ective in reducing the

�nite sample size distortion problem of the LR tests. This method takes the form of a correction

to the mean of the LR statistic for a given parameter point � under the null hypothesis. In regular

cases, the asymptotic distribution of the LR statistic is given by � = �2 log(LR) � �2 (q) where

q is the dimension of the constraints, and the asymptotic mean of the LR statistic ought to be

approximately equal to q. The Bartlett correction is intended to make the mean exactly equal

to q by replacing the above equation by �B = q�
E�(�)

and then referring the resulting statistic

to a �2 (q). Typically, given the complicated form of the LR test, it is di¢ cult to �nd an exact

expression for E� (�) and one can instead �nd an approximation of the form

E� (�) = q

�
1 +

b (�)

T

�
+O

�
T�3=2

�
: (1)

Thus, the quantity
�

1 +
b(�̂)
T

has an expectation q+ O
�
T�3=2

�
which is closer to the limit distribution.

In the independent and identically distributed (i.i.d.) setup, the Bartlett correction has been

widely studied in the literature since the pioneering work by Lawley (1956). In the paper the author

showed that the �nite-sample distribution of a Barlett-corrected likelihood ratio test statistic was

closer to the �2-distribution than the original LR statistic; see Cribari-Neto and Cordeiro (1996)

for a review. However, the Bartlett correction is relatively less explored for dependent data. In the

time series context, Giersbergen (2009) derived a Bartlett correction factor for testing hypotheses

about the autoregressive parameter in the stable AR(1) model with trend and intercept and showed

that the Bartlett corrections are useful in controlling the size of the likelihood ratio statistic in

small samples (see also Omtzigt, 2003). Similarly, Taniguchi (1991) calculated the corrections for

the AR(1) and MA(1) models without disturbance parameters, whereas Van Garderen (1999) used

di¤erential geometry and suggested how to compute the Bartlett correction factor geometrically,
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for the case of no disturbance parameter. In the context of ARMA (autoregressive moving average),

Lagos and Morettin (2004) derived a Bartlett correction for the likelihood ratio statistic used to

test hypotheses about parameters of a Gaussian stationary and invertible model. Ravishanker

et al.(1990) considered the di¤erential geometry of autoregressive fractionally integrated moving

average processes and use the properties of Toeplitz forms associated with the spectral density

functions of these long memory processes to compute the geometric quantities. The authors

investigated the role of geometric quantities on the Bartlett correction to the likelihood ratio test

statistics for the fractional di¤erence parameter. Similarly, Chen and Cui (2006, 2007) proved

that the empirical likelihood with moment restrictions is Bartlett correctable even in the presence

of a nuisance parameter.

Recently, Bartlett-type corrections in unstable autoregressive models have also attracted much

attention. For example, Chan and Liu (2020) proved that the Bartlett correction can be used

for Gaussian short-memory time series. Chan et al. (2014) extended Chan and Liu (2010) to

Gaussian long-memory time series. Similarly, Chen et al. (2016) examine the Bartlett correction

factor for the frequency domain empirical likelihood of linear time series models and showed that

the factor can be used for non-Gaussian short-memory time series; see also Chan et al.(2010), (for

earlier studies see for example Bravo, 1999; Nielsen, 1997; Larsson, 1998).

2 Model and Tests

Consider the p-dimensional V AR model

�Yt = � (�0Yt�1 + �
0Dt) +

k�1X
i=1

�i�Yt�i + �dt + "t; t = 1; :::; T (2)

where Yt, "t � (0;
) are (p � 1) vectors with E ("t"s) = 0 (for t 6= s) and �Yt = Yt � Yt�1.

The matrices of coe¢ cients have the following dimensions: � and � are (p� r); � is (p� pd); � is
(pd � r) ; and �1; :::; �k�1 are (p� p). Also, dt (pd � 1) and Dt (pD � 1) are deterministic terms
in (2). Once the cointegrating rank has been established linear restrictions on cointegrating space

can be tested for. We focus on the hypothesis H0 : � = H', where H (p� s) (for r � s � p) is

a known matrix that speci�es that the same restrictions are imposed on all cointegrating vectors

(r), s is the number of unrestricted parameters, and ' is an (s� r) matrix; see Johansen (1996)
for a discussion of tests for other hypotheses. The LR test statistic for H0 can be obtained from

the concentrated likelihood function and is given by

� = �T
rX
i=1

log
h�
1� b�i� =�1� ~�i�i ; (3)
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where �̂i and ~�i are the usual eigenvalues implied by the maximum likelihood estimation of the

restricted and unrestricted models, respectively.

For the null hypothesis H0 : � = H' an approximation to the order T�1 for the Bartlett

adjustment is given by

# =
E� (�)

q
= 1 +

1

T

�
1

2
(p+ s� r + 1 + 2pD) + pd + kp)

�
(4)

+
1

Tr
[(2p+ s� 3r � 1 + 2pD) v (�) + 2 (c (�) + cd (�))] ;

where �̂ = (�̂; �̂; 
̂), q = r(p�s), v (�) = tr

��
�0
�1�

��1X�1

��

�
with

P
�� = V ar(�0Ytj�Yt; :::;�Yt�k+2),

cd (�) = pdv (�), and the constant c (�) is given in Johansen (2000). Thus, �B = #�1� is the

Bartlett corrected LR statistic.

The likelihood ratio test in (3) and the correction in (4) are derived under the assumption that

the innovations are "t v N(0;
). However, the Gaussian hypothesis is often too restrictive for the

type of data used in economic applications. The fact that the distribution of most data relating to

�nancial variables, for example (but certainly not exclusively), are fat tailed and often skewed has

been extensively documented in the �nance literature. Although, under weak conditions relaxing

the Gaussian hypothesis does not a¤ect the asymptotic distribution of �, one may expect the

�nite sample error in rejecting probability to be larger. Moreover, when innovations are non-

Gaussian, the second terms of the asymptotic expansions of the mean and the variance of �

depend on the skewness and kurtosis of their distribution. This means that in order to use the

analytical Bartlett�s correction factor it is necessary to estimate the skewness and kurtosis of the

true distribution and accordingly modify the Bartlett�s adjustment. Rather than undertaking

these tedious calculations, it is proposed below that the non-parametric bootstrap be used to

approximate the �nite sample expectation of �. By using the empirical distribution function in

place of some speci�c parametric distribution, the non-parametric bootstrap method does not

require a choice of error distribution be made; this feature is desirable with many type of data.

The proposed inference procedure involves undertaking a simulation study using the constrained

estimates of � obtained by solving the eigenvalue problem, conditional on the initial values Y0 and

�Y0, as the true values. Given these estimates and any required starting values, bootstrap data

can be generated recursively after resampling residuals. From each generated sample, one obtains

a bootstrap value of the LR statistic, say ��j , whose average estimates the mean of � under the

null hypothesis. An alternative procedure is a straightforward application of the bootstrap p-value

approach, where the signi�cance level assigned to � is the fraction of the ��j greater than �. (Note

that the subscript ���is used to indicate the bootstrap analog throughout the paper).
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2.1 Bootstrap Algorithms

Bootstrap methods rely on simulations to approximate the �nite-sample distribution of the test

statistic under consideration. In order to achieve accurate inference procedures the bootstrap

DGP used for drawing bootstrap samples has to mimic the features of the underlying DGP . In

this section, we describe the two bootstrap algorithms used to calculate the bootstrap Bartlett

corrected test (��B) and the bootstrap p-value test (�
�). The former is suitable for the model in

(2) when the innovations are i.i.d., whereas the latter is used when innovations are independent

but not identically distributed.

2.1.1 Algorithm 1

The steps used to implement the bootstrap algorithm for calculating the bootstrap Bartlett cor-

rected LR test can be summarized as follows:

Step (1): Estimate the model in (2) and compute � and the estimated restricted residuals as

"̂t = �Xt � �̂'̂0 (H 0Xt�1 + �̂
0Dt)�

k�1X
i=1

�̂i�Xt�i � �̂dt:

Step (2): Resample the residuals from ("̂1; :::; "̂T ) independently with replacement to obtain a

bootstrap sample ("�1; :::; "
�
T ). Generate the bootstrap sample

�Y �t = �̂'̂0
�
H 0X�

t�1 + �̂
0Dt

�
+
k�1X
i=1

�̂i�X
�
t�i + �̂dt + "

�
t ;

recursively from ("�1; :::; "
�
T ) using the estimated restricted model given in (6:2).

Step (3): Compute ��j using the data of step (2) and repeat B times.

Step (4): Average the observed values ��1; :::;�
�
B to get an estimate, �

�
, of the average value

of �. A Bartlett-type corrected statistic is therefore ��B = q�

�
� . The corrected statistic is then

referred to a �2 (q) distribution (with q = r (n� s)).
As far as the test �� is concerned, when innovations are independent and identically distrib-

uted with common variance, it is possible to obtain an accurate inference by simply resampling

the residuals of the estimated restricted model in (2) without the need to make a particular para-

metric assumption about the distribution of the innovations. Swensen (2006) considers a recursive

bootstrap algorithm for testing the rank of � = ��0 in (2) and shows that, under a variety of

regularity conditions, the non-parametric bootstrap based test is consistent in the sense that the

bootstrap statistic converges weakly in probability to the correct asymptotic distribution. This

involves repeating Step (1)-(3) and then following Step (5) below.
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Step (5) Compute the bootstrap p-value function of the observed value � by calculating

P̂ �(�) = B�1
BX
j=1

I
�
��j � �

�
;

where I(�) is an indicator function that equals one if the inequality is satis�ed and zero otherwise.
The bootstrap p-value test, ��, is carried out by comparing P̂ �(�) with the desired critical level,


, and rejecting the null hypothesis if P̂ �(�) � 
. Note that the resampling and testing in

algorithm 1 is done once that the coitengrating rank has been established. Therefore, for a given

cointegrating rank all unit roots have been eliminated.

2.1.2 Algorithm 2

When the innovations show conditional heteroskedasticity simply resampling from the residual

fails to mimic essential features of the DGP that initially generated the data. A suitable mod-

i�cation of the residual based bootstrap procedure is the wild bootstrap, which is designed to

accommodate the possibility of independent but not identically distributed innovations. The wild

bootstrap method was developed by Liu (1988) based on a suggestion presented in Wu (1986).

Regarding time series, Gonçalves and Kilian (2003) proposed a recursive-design implementation

of the wild bootstrap for the autoregression model with conditionally heteroskedastic innovations.

For cointegrated VAR models, noteworthy are the recent papers by Cavaliere, Rahbek and Taylor

(2010a) and Cavaliere, Rahbek and Taylor (2010b).

The wild bootstrap DGP is given by

�Y �t = �̂'̂0
�
H 0Y �t�1 + �̂

0Dt

�
+
k�1X
i=1

�̂i�Y
�
t�i + �̂dt + "

�
t ;

where v�t = "̂tZt and Zt is speci�ed as a two-point distribution

Zt =
�
�p
5� 1

�
2

with probability

�p
5 + 1

�
2
p
5

=

�p
5 + 1

�
2

with probability

�p
5� 1

�
2
p
5

so that Zt terms are mutually independent drawings from a distribution which is independent of

the original data and has the properties that E (Zt) = 0, E
�
Z2t
�
= 1, and E

�
Z3t
�
= 1. Given the

bootstrap data, the associated value of the test statistic ��i can be calculated; repeat B times and

follows Step (4) to calculate ��B and Step (5) to calculate �
�.
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Using the fact that � = f (�; �;�i;
) is consistently estimated in the presence of conditional

heteroskedastic innovations, we show below that �� and ��B converge weakly in probability to the

�rst order asymptotic null-distribution of �.

REMARK 2.1: The procedure outlined in Algorithm 2 is suitable when the innovations are

serially uncorrelated. Many alternative procedures could be used for generating the bootstrap

DGP, such as the block bootstrap for example. Establishing which bootstrap scheme is the best

to calculate the Bartlett correction factor under di¤erent assumptions on the innovation process

is outside the scope of this paper. In this work the wild bootstrap was preferred to the block

bootstrap for the following reasons. First, the wild bootstrap method is easier to implement than

the block bootstrap as it does not involve the problem of determining block length as the latter

bootstrap method does. Second, under Assumption 1 below, the innovations form an uncorrelated

martingale di¤erence sequence and using the block bootstrap procedure when innovations are

uncorrelated may result in a loss of e¢ ciency. Finally, the consistency of the wild bootstrap in the

present context can be proved using available tools for independent random variables. However,

when innovations admit serial correlation using Algorithm 2 would fail to replicate the correlation

structure of the residuals, therefore the procedure is no longer valid.

REMARK 2.2: Note that the bootstrap Bartlett correction could easily be extended to other

inference procedure, such as the Wald test or may �nd good applications in structural VAR models

in cases where inference on the slope parameters is needed. However, recent theoretical results in

Bruggemann, Jentsch and Trenkler (2016) show that for inference in VAR statistics that depend

both on the VAR slope and the variance parameters (e.g. in structural impulse response functions)

For these statistics Algorithm 2 would fail in the presence of conditional heteroskedasticity because

the bootstrap algorithm does not correctly replicate the relevant fourth moments�structure of the

error terms (see also Jentsch and Lunsford, 2019). In contrast, the residual-based moving block

bootstrap results in asymptotically valid inference. Investigating the usefulness of the suggested

Bartlett test in the cases where the block bootstrap is needed will be the subject of future research.

2.2 Some Asymptotic Results

We now consider the ��B statistic and show that the distributions of the bootstrap based inference

procedure coincides with the corresponding asymptotic counterpart. In this paper we focus on the

pseudo-data generated by Algorithm 2 since the consistency of the bootstrap procedure proposed

in Algorithm 1 is derived in Canepa (2016). Our approach builds on the important theoretical
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results in Cavaliere, Rahbek and Taylor (2010a). The authors demonstrate that the limiting null

distributions of the rank statistics remain valid in the less restrictive case of globally stationary,

conditionally heteroskedastic shocks satisfying certain moment conditions. Cavaliere et al. (2010a)

also show that the pseudo maximum likelihood estimator of the error correction model that as-

sumes Gaussian i.i.d. disturbances remains consistent under these weaker conditions. Building on

these results below we show that the functional central limit theorem for the stochastic process

built from the sequence of partial sums for the bootstrap analog holds and the expected value of

the test is consistency estimated.

In the following w! denotes weak convergence, P! convergence in probability,
wp! weak conver-

gence in probability as de�ned by Gine and Zinn (1990), P � denotes the bootstrap probability

and E� relates to the expectation under P �. Moreover, for any square matrix A, jAj is used to
indicate the determinant of A, the matrix A? satis�es A?A = 0 (where (A;A?) is a full rank

matrix), and the norm kAk is kAk = [tr (A0A)]1=2. For any vector a; kak denotes the Euclidean
distance norm, kak = (a0a)1=2.
In order to establish the validity of the wild bootstrap we need to impose some conditions on

the innovations. More precisely, we make the following assumption:

Assumption 1

(i) De�ne the characteristic polynomial,

A(z) = (1� z)Ip � ��0z � �1(1� z)z � :::� �k�1(1� z)zk�1: (5)

Assume that the roots of j[A (z)]j = 0 are located outside the complex unit circle or at 1. Also
assume that the matrices � and � have full rank r and that �0?��? has full rank p � r, where

� = Ip � �1 � :::� �k�1.
(ii) The innovations f"tg form martingale di¤erence sequence with respect to the �ltration Ft,

Ft�1 � Ft, with E ("t) = 0 and E ("t"0t) = 
 <1.
(iii) E k"tk4+& <1, & > 0:

Assumption 1 replaces the usual Gaussian assumption on the innovations f"tg by the less
restrictive martingale sequence assumption. The innovations are not correlated, however ARCH

and GARCH e¤ects are now allowed in model (2) by Assumption 1-(ii). Finally, condition iii)

requires the 4 + & moments to be uniformly �nite.

Under Assumption 1, Theorem 1 in Rahbek, Hansen and Dennis (2002) implies that the process

Yt has the following representation

Yt = C
tX
i=1

("i + �
0Di) +

1X
i=0

Ci("t�i + �dt�i) +A0; (6)
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where C = �?

�
�0?

�
I �

k�1P
i=1

�i

�
�?

��1
�0?, the coe¢ cients Ci decrease exponentially, and A0 is

a term that depends only on the initial values and �0A0 = 0. Moreover, Theorem 2.1 in Hansen

(1992) implies the weak convergence of the stochastic integrals

T�1=2
[Tu]X
t=1

"t
w! B (u) ;

T�2
TX
t=1

 
tX
i=1

"i

! 
tX
i=1

"i

!0
w!

1Z
0

B (u)B (u)
0
du;

where B = 
1=2W is a p-dimensional Brownian motion with variance 
 and W a p-dimensional

standard Brownian motion. Rahbek et al: (2002) use this result to derive the asymptotic dis-

tribution of the pseudo likelihood ratio test for cointegrating rank. They show that, under the

assumption that innovations form a stationary and ergodic vector of martingale di¤erence se-

quence, the limit distributions of the rank tests are invariant to heteroskedasticity (see also Seo,

2006). In the paper by Cavaliere, Rahbek and Taylor (2010a) it is shown that the limiting null

distributions of the rank tests remain valid in the less restrictive case of global stationarity.

Turning now to the statistics constructed under the pseudo-data generated by Algorithm 2,

the representation in (6) is still valid for each bootstrap replication. However, the reminder

term, (A0) ; depends on the realization and needs careful consideration in the bootstrap context.

Theorem 1 extends the validity of Lemma 1 in Swensen (2006) (derived under the assumption

of i.i.d. innovations) to the case where innovations form an uncorrelated martingale sequence

di¤erence with �nite fourth moments. In the following we set �; � and the initial values of Y to

zero, without loss of generality. As before, an asterisk (�) denotes the bootstrap analog.

Theorem 1: Let the conditions of Assumption 1 hold. Then, under the null hypothesis,

��
wp! � as T !1.

Corollary 1: Under the conditions of Theorem 1, E� (��) P! E (�) as T !1.

Proof of Theorem 1: By Lemma A.4 in Cavaliere et al. (2010a), under Assumption 1, the

generated pseudo observations have the representation

Y �t = Ĉ
tX
i=1

v�i + T
1=2R�t ; (7)

where Ĉ = �̂?

�
�̂0?

�
I �

k�1P
i=1

�̂i

�
�̂?

��1
�̂0? and, for all � > 0, P

� (maxt=1;:::;T kR�t k > �)! 0 in

probability as T !1:
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Using the results in (7) we can describe the asymptotic properties of the product moment ma-

trices generated using the pseudo-observations, which are the basic properties of the test statistics.

Following the standard notation, we de�ne R0t and R1t as the residuals obtained by regressing

~Z0t = �Yt and ~Z1t = Yt�1, respectively on ~Z2t =
�
�Y 0t�1;�Y

0
t�2; :::;�Y

0
t�k+1

�
. Moreover,

Si;j = T�1
TX
t=1

RitR
0
jt =Mij �Mi2M

�1
22 M2j i; j = 0; 1:

and Mij = T�1
TP
t=1

~Zit ~Z
0
jt.

Let �
�� = p lim
T!1

T�1
TP
t=1

�0 ~Z1t ~Z
0
1t�, �
�i = p lim

T!1
T�1

TP
t=1

�0 ~Z1t ~Z
0
it for i = 0; 2, and �
ij =

p lim
T!1

T�1
TP
t=1

~Zit ~Z
0
jt for i; j = 0; 2. Under Assumption 1,

P � (kS�00 � �00k > �)
P! 0; (8)

P �
�


�̂0S�11�̂ � ���


 > �

�
P! 0; (9)

P �
�


�̂0S�10 � ��0


 > �

�
P! 0; (10)

where �ij = �
ij � �
i2 �
�122 �
2j for i; j = 0; 1; �. Moreover,

T�1=2
[Tu]X
t=1

v�t
wp! B (u) ; (11)

T�1�̂0?S
�
11�̂?

wp!
1Z
0

F (u)F (u)0du; (12)

�̂0?

�
0S�10 � S�11�̂�0

�
�?

wp!
1Z
0

F (u) dB0�?; (13)

where F (u) := �0?CB(u) and [Tu] is the integer value of uT .

The proof for (8)-(10) mimics the proof of Lemma A.7 in Cavaliere et al. (2010a). Similarly,

Lemma A.5 in the same paper implies that the functional central limit theorem for the stochastic

process built from the sequence of partial sums corresponding to the bootstrap resamples holds,

so that

T�1=2
[Tu]X
t=1

v�t
wp! B (u) :

Considering now, (11) and (12), as the reminder R�t in (7) vanishes Lemma 10 in Rahbek et

al. (2002) holds and

T�1=2�̂0?Y
�
[Tu]

wp! F (u)
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such that the continuous mapping theorem gives

T�1�̂0?S
�
11�̂?

wp!
1Z
0

F (u)F (u)0du:

Similarly, we have

�̂0?

�
S�10 � S�11�̂�̂0

�
�̂?

wp!
1Z
0

F (u)d)B0�?:

When linear restrictions are imposed on the parameters �̂ = H'̂, a submodel is de�ned

and the space spanned by the linear transformation z : Rp 7�! Rs with matrix representation

Y �t 7�! H 0Y �t forms a subspace such that sp
�
�̂
�
� sp (H). Given that linear transformations

preserve linear combinations of vectors it follows that if fY �t g satis�es (7), then fH 0Y �t g also

satis�es the same conditions. Moreover, the random process

(
T�1=2

 
[Tu]P
t=1

H 0v�i

!)
converges

weakly toward a Brownian motion with covariance matrix H 0
̂H and the asymptotic distribution

of the moment matrices is given by

T�1=2'̂0?H
0Y �[Tu]

wp! H 0 ~F (u) (14)

'̂0?H
0S�10�̂?

wp! H 0
1Z
0

~FdB0�? (15)

T�1'̂0?H
0S�11H'̂?

wp! H 0
1Z
0

~F (u) ~F (u)0duH: (16)

where ~F (u) := '0?CB(u). From Theorem 1 it follows that the (p� r) smallest solutions of����̂'̂0 �H 0S�11H �H 0S�10S
��1
00 S�01H

�
'̂
��� = 0

converge to zero. Therefore, using (14)-(16) the asymptotic distribution of �� can found by

mimicking Theorem 13.9 in Johansen (1996).

�

Proof of Corollary 1:

Under Assumption 1, (11)-(12) imply weak convergence of the partial sums of stochastic in-

tegrals. Moreover, from (8)-(10) we have that S�ij ! �ij in probability and the estimators of

the parameters are consistent. Under the conditions of Theorem 1, this trivially implies that

E� (��)! E (�) in probability as T !1.
�
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3 The Monte Carlo design

To what extent do deviations from the Gaussian assumption in model (2) a¤ect the �nite sample

performance of the analytical Bartlett correction? In addition, can the non-parametric bootstrap

based Bartlett adjustment introduced above deliver accurate small sample inference when the

Gaussian assumption on the innovations is relaxed? Questions of this nature can best be settled

by case and simulation studies. We now describe the Monte Carlo study that addresses these

issues.

The DGP adopted is given by

Y1t = Y2t + u1t where u1t = �u1t�1 + "1t (17)

Y2t = �Y1t + u2t u2t = u2t�1 + "2t

�Y3t = "3t

�Y4t = "4t

with

2664 "s;t

"l;t

3775 � i:i:d: N

2664
0BB@ 0

(2�1)

0
(2�1)

1CCA ;

0BB@ A
(2�2)

0
(2�2)

0
(2�2)

B
(2�2)

1CCA
3775

where "s;t =
�
"1t "2t

�0
, "l;t =

�
"3t "4t

�0
, A =

0BB@ �2 �{

�{ �2

1CCA, and B = �2I. The null

hypothesis

H0 : � = H' =

266666664
1 0

(1�2)

�1 0
(1�2)

0
(2�1)

I
(2�2)

377777775
'

(3�1)
;

is tested against the alternative H1 : � unrestricted. For easy of interpretation the DGP in (17)

is also given in VECM form
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266666666664

�Y1t

�Y2t

�Y3t

�Y4t

377777777775
=

266666666664

�Y2t

��Y1t

0

0

377777777775
+

266666666664

(� � 1)

0

0

0

377777777775
(Y1t�1 � Y2t�1) +

266666666664

"1t

"2t

"3t

"4t

377777777775
From (17) it is easy to see that under the null hypothesis the variables Y1t, and Y2t enter into

the cointegrated relationship with coe¢ cients proportional to (1;�1). This restriction matches
the hypothesis of proportional co-movements of the two random variables. The DGP in (17) is

similar to that used in Gonzalo (1994). Among others, Gonzalo considers a simple two dimensional

V AR in which cointegration holds between the I(1) series Y1t and Y2t in (17). The DGP used in

Gonzalo allows for high control over the many parameters a¤ecting the size distortion of � such

as the speed of adjustment (�), the correlation between the innovations (�), and the volatility

parameter (�). A possible shortcoming, however, is that bivariate cointegrated V ARs are rarely

encountered in empirical applications. The DGP in (17) maintains high control over the experi-

mental design while also having greater practical relevance. The experimental parameter space is

T 2 (50; 100; 250; 500); � 2 (0:2; 0:5; 0:8; 1) ; � 2 (�0:5; 0; 0:5) ; � = 1. In addition, combinations
of these parameters with alternative distributions of "t are considered.

Although non-normality is not a feature con�ned to �nancial data, it is the �nancial liter-

ature that has extensively documented substantial departures from the assumption of Gaussian

innovations. For example, it is well established that the unconditional distributions of returns

from �nancial market variables such as equity prices and interest rates are characterized by non-

normality. Equity returns tend to be negatively skewed, whereas the patterns of skewness for

bond market yields are more varied. Non-normality of the marginal distributions of returns does

not necessarily imply the non-normality of the conditional distributions, but many empirical stud-

ies suggest that for �nancial data the Gaussian distribution is highly counterfactual. Given the

widespread use of Johansen�s procedure in �nancial applications, it seems appropriate to consider

innovation distributions that better describe the behavior of �nancial markets.

To illustrate the problem of non-normality in �nancial market variables, we use the behavior of

exchange rates. It is well known that exchange rate changes do not follow a Gaussian distribution.

Potentially important sources of non-zero skewness and excess kurtosis are recurrent periods of a

volatile and then quiet currency markets. To mimic the jump-like behavior caused by the volatility

clustering of exchange rates, several researchers have allowed the innovations to be drawn from fat

tailed distributions. Among others, Tucker and Pond (1988) provide evidence on the descriptive

validity of the mixture of normal distribution as a statistical model for currency markets. Hull and
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White (1998) give indications on the choice of parameters of the mixture of normals that match

the higher-order moments of exchange rate changes for a number of major trading currencies.

Building on these studies we allow the innovations to be drawn from these distributions.1 The

DGP in (5) has

"s;t � i:i:d: !1N
�
�1; �

2
M1

�
+ !2N

�
�2; �

2
M2

�
and "l;t � N(0; 1) (18)

with !1�1 + !2�2 = 0; !1; !2 � 0, and !1 + !2 = 1. Volatility clustering is introduced in (5) by

!1 that causes occasional "jumps" in the innovation process of the cointegrated VAR(1).

When �1 = �2 = 0 the zero skewness assumption about "s;t is preserved, being the means

of the normal distributions mixed at zero. In this case, excess kurtosis has been introduced in

(17) by choosing !1 < !2 and �2M1 > �2M2 . Under this assumption the kurtosis in "s;t is strictly

increasing according to the quantity �2M1

�2M2
. Consistent with these considerations, the following �ve

distributions of "s;t have been investigated

D1 : "s;t � i:i:d: 0:15N (0; 3:1329) + 0:85N (0; 0:6084) ;

D2 : "s;t � i:i:d: 0:52N (�2; 1:5876) + 0:48N (2:18; 0:3721) ;

D3 : "s;t � i:i:d: 0:7N (2; 1:4161) + 0:3N (�4:7; 0:0196) ;

D4 : "s;t � i:i:d: 0:32N (4; 1:9881) + 0:7N (�1:9; 0:5329) :

Table 1 summarizes the descriptive statistics for D1, D2, D3 and D4. Note that the skewness

coe¢ cient, (Skew), is computed as the third theoretical sample moment standardized by three

halves power of the variance, whereas the kurtosis coe¢ cient, (Kurt), is the fourth theoretical

sample moment divided by the square of the variance. For a normal distribution Skew should be

zero and Kurt should be equal to three.2

Table 1. Descriptive measures of D1, D2, D3, and D4:

1 In a related paper Canepa (2016) considers a large range of distributions from heavily fat tailed (i.e. Student-t
distributions with 3 to 30 degree of freedom) to highly skewed innovations (�2 distribution with 3 to 30 degrees of
freedom), in order to disentangle the e¤ect of skewness and kurtosis on the LR test. Simulation results in Canepa
(2016) are obtained by response surface regression.

2 Note: The second, third and forth central moments of "it are calculated as E("
2
it) =

2X
b=1

!b
�
�2b + �

2
b

�
, E("3it) =

2X
b=1

!b
�
3�b�

2
b + �

3
b

�
, and E("4it) =

2X
b=1

!b
�
3�4b + 6�

2
b�

2
b + �

4
b

�
(for b = 1; 2), respectively.
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D1 D2 D3 D4

Mean 0.00 0.00 0.00 0.00
V ar 1.08 3.28 3.82 6.29
Skew 0.00 -0.50 -2.65 1.34
Kurt 4.61 4.49 12.83 4.16

As it emerges from Table 1, the innovations generated using mixture of normals cover a broad

range of fat tailed and skewed distributions. Innovations generated under D1 have mildly fat tails

but are not skewed, whereas D2, D3 and D4 are fat tailed and skewed distributions.

Though mixture of normals introduces fat tails, it preserves the i.i.d. structure of the in-

novations. Among others, Bollerslev (1987) suggests that ARCH and GARCH models better

�t exchange rate data measured over short time intervals (i.e. daily or weekly). Accordingly,

simulations with conditional heteroskedastic innovations have been carried out with

"1t =
p
ht&1t; "2t = {"1t +

p
(1� {2)&2t; "3t and "4t � N (0; 1) ;

with &i;t � N (0; 1) (for i = 1; 2) and ht denotes the conditional variance. Two speci�cations of

the variance schemes are used: an ARCH(1) process given by

ht =
�

1� % + %"
2
1t�1; (18)

with � = 1, and a GARCH(1; 1) process given by

ht =  0 +  1"
2
1t�1 +  2ht�1: (19)

with  0 = 0:1. As for the choice of the other parameters, the following values have been selected

D5 : "s;t as in (7) with % = 0:4;

D6 : "s;t as in (7) with % = 0:8;

D7 : "s;t as in (8) with  1 = 0:570 and  2 = 0:921;

D8 : "s;t as in (8) with  1 = 0:095 and  2 = 0:881:

The parameter values in D7 and D8 are those estimated for the exchange rate markets in

Bollerslev (1987).

Estimates of the rejection probabilities have been obtained using pseudo-random numbers with

programs written in GAUSS.3 The Monte Carlo experiment was based on N = 10; 000 replications

3 The code used for the Monte Carlo simulation experiment will be available upon request.
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for �, �B and on N = 1; 000 replications for ��B and �
�. All bootstrap distributions have been

generated by resampling and then calculating the test statistic 800 times. The random number

generator was restarted for each T value with the initial value set equal to zero. The VAR(1)

model was �tted with an unrestricted constant. Moreover, note that in the Johansen procedure,

the maximum likelihood estimator of � in equation (2) is calculated as the set of eigenvectors

corresponding to the s largest eigenvalues of S00kS
�1
00 S0k with respect to Skk , where S00; Skk and

S0k are the moment matrices formed from the residuals�yt and yt�k, respectively, onto the�yt�j .

In this paper in place of the conventional algorithm for cointegration analysis (i.e. the algorithm

for maximum likelihood estimation that uses the second moment matrices), all simulation results

reported have been obtained using an algorithm based on QR decomposition; see Doornik and

O�Brien (2002). This yields simulation results that are more numerically stable.

4 The Monte Carlo results

Tables 2-5 report the simulation results on the performance of �, �B , ��B , and �
�. The �nite

sample signi�cance levels are estimated for nominal levels of 5% and all estimates are given as

percentages. In Table 2, the normal distribution serves as a benchmark, whereas Table 3 shows

the results for the case of innovations drawn from a mixture of two normal distributions. Table

3 also contains results relating to the sensitivity of the error in rejection probability to variations

of key parameters of the DGP . Finally, Table 4 reports the rejection frequencies for the case of

ARCH and GARCH innovations.

Before looking at other speci�cs of the simulation results it is noteworthy to consider the

benchmark case in which "t � N (0; 1) ;(note that in this case the distribution of "s;t;= "l;t in

(17)). As far as � is concerned, Table 2 mainly con�rms previous �ndings that inference based

on �rst order asymptotic critical values is markedly inaccurate with excessively high rejection

frequencies. Correcting � using the analytical Bartlett factor improves the behavior of the test

statistic. However, Table 2 indicates that the performance of �B is highly dependent on the

autoregressive coe¢ cient of the error correction mechanism, �. When � is large (i.e. the speed of

adjustment to the cointegrated equilibrium is low), the correction does not work well. Using the

bootstrap to approximate the Bartlett adjustment factor produces estimated levels that are less

sensitive to the value of � parameter. The performance of the p-value bootstrap test is also less

dependent on the value of the speed of adjustment parameter. Looking at the simulation results

in Table 2 it appears that when T = 100 and � 6= 0, �� and ��B work well for � � 0:8, whereas
the empirical levels of �B are within the 95% con�dence interval for � � 0:5, say. When � = 1

the process Yt is a pure I(1) process that does not cointegrate. In this case, we do not expect the
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resampling schemes presented in Section 2 to work, since the roots of the characteristic polynomial

of the model in (2) are located inside the unit circle, and the process Y �t �E (Y �t ) is not stationary.
The size distortion of ��B and �

� is still quite moderate, but there is no reason to believe that the

test statistics would have adequate power. (Note that for the near unit-root model the bootstrap

becomes inconsistent just as the exact unit root case). Coming to �, the estimated sizes reported

in columns 3-6 show that the error in rejection probability increases when � ! 0: However, no

matter the value of �, bootstrap based inference outperforms �B .

Table 2. Estimated rejection probabilities, for the 5% critical value (in percent). Case withN(0; 1) innovations.

� = 0:8 � = 0:5

Test � = �0:5 � = 0 � = 0:5 � = 0:2 � = 0:5 � = 1

T = 50 � 25:7 29:5 26:1 9:2 11:9 41:9
�B 14:5

(1:559)
17:3
(1:563)

14:4
(1:565)

4:5
(1:407)

5:6
(1:473)

25:3
(1:597)

��B 7:4 7:9 7:3 5:1 5:3 11:2
�� 8:1 8:3 8:6 5:1 5:7 13:1

T = 100 � 12:8 16:1 12:8 6:8 7:9 40:8
�B 8:4

(1:290)
11:0
(1:281)

8:7
(1:280)

4:8
(1:207)

5:1
(1:233)

32:1
(1:298)

��B 5:5 6:0 5:2 4:9 5:1 11:1
�� 5:4 5:9 5:5 4:8 5:3 13:0

T = 250 � 7:7 8:7 7:9 5:6 5:8 40:6
�B 6:2

(1:090)
7:0

(1:112)
6:1

(1:116)
5:0

(1:079)
4:7

(1:097)
36:4
(1:120)

��B 4:6 5:1 5:0 5:3 5:0 11:0
�� 4:8 5:1 5:2 5:4 5:2 12:7

T = 500 � 5:7 6:7 6:9 5:4 5:3 25:7
�B 5:2

(1:003)
6:4

(1:092)
5:2

(1:036)
5:0

(1:054)
4:8

(1:031)
20:3
(1:110)

��B 5:2 5:2 5:0 5:4 5:0 8:00
�� 5:1 5:0 5:1 5:4 5:1 9:02

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 in Section

2. For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800. A 95% con�dence

interval around the nominal level of 5% is given by (3.6, 6.4). The Bartlett corrections are given in parenthesis.

The asymptotic distribution is �2(1).

Turning to the question of assessing how good is the bootstrap Bartlett correction when the

innovations are fat-tailed, Table 3 suggests that the answer depends in a complicated way on �,
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�, T and the distribution of "s;t. Looking at the estimated levels of � over the range D1; :::; D4

in the �rst place, a match with the excess kurtosis and skewness coe¢ cients in Table 2 reveals

that, in general, the error in the rejection probability of the test increases with jKurtj and jSkewj,
with the highest size distortion for the case of D3 and D4. Furthermore, comparing the estimated

sizes from the top and the bottom panel in Table 3 it appears that the e¤ect of non-Gaussian

innovations on the estimated level of the test is, once again, highly dependent on the parameter

values of the DGP : it is pronounced when the speed of adjustment is slow and it is relatively mild

when the latter is fast (i.e., � = 0:2). Bewley and Orden (1994) report that Johansen�s estimator �

produces outliers when the speed of adjustment is slow, while Phillips (1994) provides a theoretical

analysis showing that the �nite sample distribution of � is leptokurtic. The simulations in Bewley

and Orden and the theoretical results in Phillips explain why � behaves so poorly when the

combinations of � = 0:8 and the non-Gaussian distributions in Table 3 are selected: excess kurtosis

in the innovations magni�es the e¤ect of the slow speed of adjustment increasing the mismatch

between the �nite sample and the asymptotic reference distribution of the test statistic by moving

the distribution to the left. In this situation, �B can only be partially successful because the

second terms of the asymptotic expansions of the mean of � depend on the skewness and kurtosis

of its distribution, and the conditions under which this dependence vanishes have not yet been

established. In contrast, when using ��B the Gaussian distribution is replaced with the empirical

density function of the innovations. This strongly mitigates the e¤ects of skewness and kurtosis

on the �nite sample mean of the test and makes the �nite sample distribution of ��B closer to the

asymptotic distribution.
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Table 3. Empirical sizes for the 5% (in percent) critical value. Case with mixture of normal innovations.

� = 0:8

� = �0:5 � = 0:5

"s;t � �B ��B �� � �B ��B ��

T = 50 D1 31:0 18:3
(1:563)

8:6 9:3 31:6 18:4
(1:566)

8:5 9:7

D2 28:0 15:8
(1:564)

8:2 8:8 28:9 16:3
(1:561)

8:4 9:1

D3 32:6 19:1
(1:562)

8:3 9:0 33:2 19:9
(1:559)

8:8 10:5

D4 34:8 20:9
(1:562)

9:3 10:9 34:5 20:3
(1:556)

8:6 10:4

T = 100 D1 18:5 13:2
(1:276)

5:4 6:1 19:0 13:2
(1:281)

6:2 6:7

D2 15:4 10:7
(1:281)

5:2 5:4 15:8 10:7
(1:283)

6:0 6:1

D3 21:0 14:8
(1:283)

6:5 6:7 21:7 15:4
(1:279)

5:8 7:0

D4 23:8 17:7
(1:281)

7:2 8:0 23:4 17:0
(1:281)

5:8 6:1

T = 250 D1 8:6 7:1
(1:107)

4:8 4:6 8:8 7:3
(1:114)

4:7 4:7

D2 7:7 6:0
(1:118)

5:2 5:1 8:0 6:4
(1:115)

4:5 4:5

D3 9:6 8:0
(1:109)

5:7 5:3 9:6 8:0
(1:114)

5:2 5:4

D4 11:1 9:0
(1:113)

4:4 4:2 10:6 8:9
(1:116)

4:1 4:3

T = 500 D1 5:3 5:2
(1:055)

4:9 4:9 5:5 5:3
(1:011)

4:9 4:8

D2 5:5 5:0
(1:061)

5:1 5:4 5:1 5:0
(1:017)

4:9 4:8

D3 5:4 4:9
(1:009)

5:5 5:2 5:4 5:1
(1:011)

5:2 5:0

D4 4:8 6:0
(1:019)

4:9 4:7 5:7 5:9
(1:014)

5:1 5:3
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Table 3. (Continue)

� = 0:5

� = 0:2 � = 0:5

"s;t � �B ��B �� � �B ��B ��

T = 50 D1 10:1 5:3
(1:394)

4:8 4:6 15:2 7:9
(1:471)

6:3 6:9

D2 9:5 5:0
(1:399)

4:4 5:6 13:0 6:4
(1:473)

6:2 5:8

D3 11:0 5:1
(1:396)

5:9 5:8 17:3 9:5
(1:474)

6:0 6:3

D4 12:3 6:2
(1:397)

5:9 5:8 18:7 10:1
(1:473)

6:1 6:6

T = 100 D1 7:8 5:4
(1:203)

4:0 4:2 9:2 6:1
(1:239)

5:9 4:6

D2 7:2 4:9
(1:200)

4:7 5:2 8:4 5:4
(1:238)

5:0 5:4

D3 7:5 5:1
(1:202)

5:1 5:0 9:6 6:4
(1:235)

5:4 5:6

D4 8:1 5:6
(1:113)

4:6 4:7 10:5 7:3
(1:235)

5:4 4:8

T = 250 D1 5:8 5:0
(1:079)

4:9 4:7 6:5 5:4
(1:094)

5:0 4:5

D2 5:7 4:9
(1:077)

4:7 5:0 6:2 5:0
(1:096)

5:1 4:6

D3 6:1 5:2
(1:079)

4:7 4:4 6:7 5:5
(1:095)

4.5 4:7

D4 6:1 5:2
(1:078)

4:8 4:7 6:9 5:7
(1:096)

4:5 4:6

T = 500 D1 5:2 5:5
(1:017)

5:1 5:0 5:7 5:2
(1:006)

4:9 5:2

D2 5:1 5:2
(1:031)

5:0 5:2 5:6 5:0
(1:001)

5:0 4:9

D3 5:4 5:0
(1:019)

4:9 4:7 5:2 5:1
(1:031)

4.9 4:9

D4 5:5 5:1
(1:012)

4:9 5:0 5:3 5:4
(1:001)

4:9 5:0

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 in Section

2. For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800. The Bartlett

corrections are given in parenthesis.

The �nal set of simulation experiments relates the ARCH and GARCH innovations. Table 4

presents the empirical sizes for the inference procedure under consideration when di¤erent values

of %,  1 and  2 are considered. As for the other cases, the error in rejection probability of � and

�B heavily depend on the distribution of "s;t. In contrast, ��B and �
� behave quite well leaving

open the possibility of extending the bootstrap algorithm presented for the Bartlett correction in

Section 2 to other cases in which the ordinary residual based bootstrap procedure would fail.
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Table 4. Empirical sizes (in percent) for the 5% critical value. Case with ARCH and GARCH innovations.

� = 0:5 � = 0:8

"s;t � �B ��B �� � �B ��B ��

T = 50 D5 16:7 8:8
(1:474)

5:3 5:6 33:0 19:6
(1:562)

7:7 8:4

D6 19:4 10:6
(1:472)

6:0 6:2 34:8 21:1
(1:560)

8:1 9:3

D7 16:9 9:0
(1:476)

5:7 5:5 31:2 18:6
(1:561)

8:8 9:8

D8 16:5 8:8
(1:468)

5:5 5:5 31:8 18:7
(1:562)

8:6 9:3

T = 100 D5 8:5 5:6
(1:241)

5:2 5:5 19:3 13:5
(1:280)

6:9 7:4

D6 9:5 6:4
(1:235)

5:0 5:2 22:6 16:3
(1:279)

7:7 8:2

D7 9:6 6:4
(1:234)

5:4 5:1 20:9 14:8
(1:281)

6:8 6:9

D8 9:4 6:3
(1:238)

5:2 5:3 20:4 14:3
(1:283)

6:8 6:4

T = 250 D5 6:4 5:2
(1:095)

4:4 4:6 9:3 7:6
(1:113)

4:9 5:4

D6 6:5 6:4
(1:094)

4:6 4:4 10:2 8:6
(1:111)

5:1 5:0

D7 6:4 5:6
(1:096)

5:2 5:1 9:6 7:9
(1:106)

4:5 4:7

D8 6:7 5:7
(1:096)

5:0 5:1 9:5 7:7
(1:110)

4:9 4:8

T = 500 D5 5:5 5:0
(1:005)

5:1 4:9 5:3 5:1
(1:011)

5:1 5:2

D6 5:1 5:6
(1:094)

4:9 4:6 5:4 5:2
(1:010)

5:3 5:2

D7 5:0 5:9
(1:003)

5:3 5:2 6:3 5:5
(1:089)

5:0 4:9

D8 5:6 5:2
(1:008)

5:1 5:1 6:5 5:5
(1:080)

4:9 4:9

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 2 in Section 2.

DGP with � = 0: For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800.

The asymptotic size of the tests is 5%. The Bartlett corrections are given in parenthesis.

To wrap up the discussion, in Tables 2-4, � is greatly oversized in most instances. The error in

rejection probability of the test statistic crucially depends on the parameter values of the DGP ,

and violations of the Gaussian assumption worsen the performance of the test for �nite samples.

�B o¤ers improvements over the uncorrected statistic but its behavior mimics the performance of

� and thus, it is not entirely reliable. In contrast, the two bootstrap procedures are less sensitive

to the parameter values of the DGP and appear to be relatively robust to both non-Gaussian and

conditionally heteroskedastic innovations.
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4.1 Results Under the Alternative Hypothesis

It is well known that the Bartlett correction factor is designed to bring the actual size of asymptotic

tests close to their respective nominal size, but it may lead to a loss in power. Accordingly, the

power properties of the proposed procedure are considered in this section.

For the experiments evaluating the power of the tests, data were generated under the alternative

hypothesis

H1 : � = H' =

26664
1 0

(1�2)
�g 0

(1�2)
0

(2�1)
I

(2�2)

37775 '
(3�1)

;

where g 2 (1:2; 1:4; 1:6; 1:8:2) with � = 0:5; � = 0:5, and � = 1 in (17). The results of this set

of experiments are reported in Table 5. Once again, the case of "t; i.i.d. N(0; 1) (i.e the case

with "s;t;= "l;t in (17)) serves as a benchmark, then "s;t � D1 and "s;t � D5 are considered.

Experiments using the other distributions for the innovations considered in Table 3-4 produced

similar power properties and results will be omitted in the interest of brevity. Note that simulation

results were obtained using algorithm 1, for "t � N(0; 1) and "s;t � D1; whreas algorithm 2 was

used for "s;t � D5 :

Simulation experiment results under the alternative hypotheses are presented in Table 5. The

simulation results show that the sample size and the distance between the null and the alternative

hypothesis play an important role in determining the power of the test statistics under considera-

tion.4 Considering the asymptotic test �rst, it appears that the power of the � is badly a¤ected

by the choice of the distribution of the innovations: the test is relatively well behaved when the

innovation are fat-tailed but i.i.d., whereas the performance of the test deteriorates when ARCH

innovations are introduced in the DGP . Turning to the comparison of the power among the

di¤erent procedures, overall it is found that in small samples (i.e. T = 50) correcting the test

statistic for the size shifts the estimated power function down. There is evidence that ��B and �
�

share similar power properties, with no test uniformly outperforming its competitor. The results

for the sensitivity of the inference procedures to the parameters of the DGP are not reported in

detail here but simulation experiment showed that a slow adjustment to the equilibrium worsens

the rejection frequencies for ��B , �
�and �B . On the other side, changing the correlation between

the noises does not have an important impact on the power estimates.

4 Note that in Table 5 simulation results for the sample size T=500 are not reported since the 100% rejection
frequency was achieved no matter the innovation distribution under consideration.
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Table 5. Rejection frequencies under the alternative hypothesis (in percentage) for the 5% critical value.

"t g = 1:2 g = 1:4 g = 1:6 g = 1:8 g = 2

T = 50 N � 71.7 89.8 93.8 95.2 95.7
�B 60.7 84.0 89.6 91.6 92.5
��B 60.4 83.6 88.7 90.5 90.8
�� 60.6 83.0 89.2 90.6 91.0

D1 � 50.0 72.9 80.7 83.9 85.5
�B 37.0 61.6 72.0 75.7 77.5
��B 29.3 53.3 59.7 63.9 65.0
�� 30.2 54.5 61.5 64.8 66.4

D5 � 25.3 41.0 52.6 58.8 62.7
�B 15.7 28.3 39.3 46.5 50.3
��B 11.4 21.5 29.1 33.2 36.6
�� 11.1 24.4 29.5 33.9 37.3

T = 100 N � 98.2 99.9 100 100 100
�B 97.5 99.8 99.9 100 100
��B 96.8 99.0 100 100 100
�� 96.8 99.7 100 100 100

D1 � 86.1 98.1 99.4 99.7 99.8
�B 82.1 97.3 99.0 99.5 99.7
��B 80.1 96.7 99.0 99.3 99.4
�� 79.6 96.7 98.9 99.3 99.4

D5 � 44.5 77.2 89.1 93.6 95.3
�B 37.7 72.1 85.9 91.4 93.6
��B 32.7 66.7 80.9 87.2 89.5
�� 32.5 66.5 80.9 87.6 89.5

T = 250 � 99.9 100 100 100 100
N �B 99.9 100 100 100 100

��B 99.8 100 100 100 100
�� 99.8 100 100 100 100

D1 � 96.3 100 100 100 100
�B 95.8 100 100 100 100
��B 95.7 100 100 100 100
�� 96.7 100 100 100 100

D5 � 93.0 99.8 100 100 100
�B 92.0 99.8 100 100 100
��B 91.9 99.7 100 100 100
�� 91.9 99.7 100 100 100

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 and 2 in

Section 2 using N=1000 and B=800. DGP with � = 0:5, � = 0:5:
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5 Robustness Check

Previous simulation results reveled several insights on the performance of the Bootstrap Bartlett

corrected test. A possible shortcoming is that DGP s with only one cointegration vector and a

limited number of lags were considered. Increasing the number of nuisance parameters in theDGP

is expected to increase the �nite sample size distortion of the asymptotic LR test (see for example

Podivinsky, 1992). To investigate the e¤ect of the nuisance parameters on the �nite sample

performance of the inference procedures a further set of simulation experiments was undertaken.

In this case the simulation design involved: i) considering the e¤ect of increasing the number of

lags in the DGP ; ii) increasing the cointegrating rank from r = 1 to r = 2. To complete the

picture, the e¤ect of including both greater dynamic and increasing the cointegration rank was

also considered.

In particular, point i) was addressed by undertaking simulation experiments using the DGP

as in Eq. (17) with � = 0:5, � = 0:5, and N(0; 1) innovations. To investigate the e¤ect of the

nuisance parameters the number of lags was progressively incresed from k = 1 to k = 3. To

address point ii) a second DGP with r = 2 was considered. The second DGP, labelled as DGP2,

is a 4-dimensional VAR given by

2664
�X1t

�X2t

�X3t

�X4t

3775 =
2664
�11 0
0 �22
0 0
0 0

3775� �11 �21 �31 0
0 �22 �32 0

�2664
X1t�1
X2t�1
X3t�1
X4t�1

3775+
2664
"1t
"2t
"3t
"4t

3775
where �11; �22 = 1, �11 = 0:4; �21 = 1:7; �31 = 0:1; �22 = 0:3; �32 = 0:6 and the "i;t as in GDP1.

In this case the null hypothesis of interest is

H0 : � = H' =

24 I
(2�2)
0

(2�2)

35 '
(2�2)

;

where I is an identity matrix. Once again, under alternative hypothesis � is unrestricted.

Table 6 reports the simulation results for the empirical sizes of �, �B ; ��Band �
�. For ease of

interpretation the empirical sizes in Table 2 for k = 1 are also reported.
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Table 6. Estimated rejection probabilities, for the 5% critical value (in percent).

� �B ��B ��

T = 50 GDP1 k = 1 11.9 5:6
(1:473)

5:3 5.7

k = 2 24.8 11:9
(1:671)

10.2 10.8

k = 3 39.2 15:2
(1:674)

14.3 14.4

GDP2 k = 1 11.3 6:2
(1:544)

6.1 6.2

k = 2 20.6 11:7
(1:573)

10.4 10.5

k = 3 32.2 12:7
(1:515)

12.3 12.6

T = 100 GDP1 k = 1 7.9 5:1
(1:233)

5.1 5.3

k = 2 11.5 7:9
(1:333)

6.7 7.1

k = 3 15.9 8:3
(1:359)

7.3 7.4

GDP2 k = 1 7.7 5:2
(1:423)

5.5 5.6

k = 2 11.2 7:8
(1:231)

8 7.1 7.4

k = 3 14.9 10:0
(1:451)

10.1 9.8

T = 250 GDP1 k = 1 5.8 4:7
(1:097)

5.0 5.2

k = 2 7.0 5:7
(1:008)

5.0 5.3

k = 3 10.1 6:2
(1:124)

6.6 5.9

GDP2 k = 1 6.1 5:1
(1:002)

6.0 5.6

k = 2 8.1 6:2
(1:182)

6.4 6.2

k = 3 10.1 6:8
(1:183)

7.1 7.2

T = 500 GDP1 k = 1 5.3 4:8
(1:031)

5.0 5.1

k = 2 5.6 5:2
(1:034)

5.1 5.3

k = 3 5.4 5:3
(1:035)

5.3 5.2

GDP2 k = 1 5.5 5:2
(1:031)

5.3 5.0

k = 2 5.7 5:3
(1:032)

5.5 5.5

k = 3 5.6 5:2
(1:031)

5.6 5.4

Note: The estimated rejection probabilities of ��B and �� have been calculated using algorithm 1 in Section

2. For � and �B the number of replications is N=10,000, for ��B and �� N=1,000 and B=800. A 95% con�dence

interval around the nominal level of 5% is given by (3.6, 6.4).
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As far as the simulation results are concerned the �rst thing to note in Table 6 is that inference

based on �rst order asymptotic critical values is, once again, markedly inaccurate with excessively

high rejection rates. Increasing the number of lags, k, dramatically increases the deviation from

the nominal levels. By contrast, allowing more cointegrating vectors, r, in the system slightly

reduces the size distortion. Turning to empirical sizes for �B , and ��B , we can see that they are

much closer to the nominal sizes than the �rst order asymptotic critical values. Overall, the results

in Table 6 show that correcting the LR test statistic is worthwhile, since all the empirical sizes

reported for the corrected test are closer to the nominal 5% level than the unadjusted test statistic.

However, introducing many nuisance parameters in the model a¤ects the size accuracy of all test

statistics under consideration.

Note that in Table 6 only results with normal innovation are reported. In line with the results

in Table 3, departures from the normal distribution of the innovations incresed the size distortion

of the � and �B procedures, whereas �
� and ��B presented empirical sizes closer to the nominal

size (results not reported but available upon request).

6 An Empirical Application

As an illustration, the bootstrap Bartlett procedure discussed in Section 2 has been applied to

investigate purchasing power parity (PPP) relationship. According to economic theory, once

converted to a common currency, national price levels should be equal. In other words,

P = �P + E

where P is the log of the domestic price level, �P is the log of the foreign price level, and E denotes

the log of the spot exchange rate (home currency price of a unit of foreign currency). Therefore,

departures from PPP relationship at time t can be de�ned as

PPPt = Pt � �Pt � Et: (20)

Equation (20) implies that if the PPP mechanism is functioning, one should observe the ten-

dency of the two markets to adjust toward the long-run equilibrium level of exchange rates, mean-

ing that PPPt should be a stationary stochastic process. However, using conventional unit root

tests a number of studies examining the empirical validity of the PPP relationship for the period

of �oating exchanges rates have failed to reject the null hypothesis of non-stationarity for PPPt

leading to what Obstfeld and Rogo¤ (2001) de�ne as the "PPP puzzle" (see also Rogo¤, 1996).

The progress in econometrics over the past thirty years added hundreds of papers to the PPP�s
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literature. Failure to �nd empirical evidence of the PPP relationship in the empirical literature

has identi�ed the PPP puzzle as one of the six major puzzles in international economics (see for

example Razzak, 2018; Chen and Engel, 2005; Frydman et al., 2009; Imbs et al., 2005; Ford and

Horioka, 2017; Horioka and Ford, 2017; Falahati, 2019; Johansen, and Juselius, 1992).

Reviewing the existing empirical works on PPP a large consensus on two facts emerges. First,

consensus estimates suggest that the marginal distributions of prices and exchange rates exhibit

excess kurtosis and nonzero skewness such that a Gaussian conditional distribution for the inno-

vations is typically counterfactual (see for example Tucker and Pond (1988), Fujihara and Park

(1990), Engel and West, 2005). Second, there is fairly persuasive evidence that it takes long time

before PPP returns to its steady-state value, meaning that speed of adjustment toward PPP equi-

librium is very slow (see for example Alves et al., 2001; Masih and Masih, 2004; Costa and Crato,

2001). Because ��B is less sensitive to parameter values of the DGP (the empirical levels of ��B

reported in Table 2 showed much less variation over the grid of parameters considered in the Monte

Carlo experiment) and better able to cope with deviations from the Gaussian assumption, this

test statistic may be appropriate when using Johansen�s procedure for testing PPP hypotheses.

As an application we test weather or not the PPP relationship holds for the real exchange

rate between the US dollar and the currency of a number of countries (economic regions) using

quarterly data from 2000:Q1 to 2020:Q1. Namely, the countries included in the sample are Canada,

UK, China, Australia and the EU area.5 For the h-country (h = 1; :::; 5) let Eh;t be the nominal

dollar exchange rate, Ph;t the domestic consumer price index, and the US consumer price index�
�PUSA;t

�
.

As for the estimation results, preliminary analysis on the unrestricted VAR(2) models ruled

out serial correlation however, evidence of non normality and heteroskedasticity of the ARCH

type was detected for the series
�
Ph;t � �PUSA;t

�
in all models under consideration. Under these

circumstances, the test �B no longer constitutes a valid inference procedure. For this reason �B

was discarded from the analysis.

In Table 7, the empirical p-values for �;��B and �
� are reported. The null hypothesis under

consideration is that
�
Ph;t � �PUSA;t

�
�Eh;t is stationary, or equivalently, that the vector (1;�1)0 2

sp(�). This can be formulated as the hypothesis H0 : � = H'̂ with

H 0 =
�
1 �1

�
versus the alternative H1 : � unrestricted. Empirical levels for ��B and �

� in the third and forth

columns were obtained using algorithm 2 in Section 2 with B = 5; 000. The p-values for � were

calculated by taking the 95% percentile from the �2 (1) and calculating the actual p-value as the

5 For further examples on the application of the Bootstrap Bartlett corrected LR test see Canepa 2020.
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frequency of rejection.

Table 7. Actual rejection probabilities for the PPP relationship between the U.S. and other countries.

� ��B ��

UK 0.002 0.072 0.061
AUSTRALIA 0.030 0.151 0.132
CANADA 0.436 0.567 0.439
EU AREA 0.055 0.132 0.101
CHINA 0.809 0.901 0.911

From Table 7 it appears in �nite samples the asymptotic LR inference procedure does not work

well as it rejects the null hypothesis in favor of the alternative in three cases (i.e. UK, Australia

and the EU area), whereas the corrected LR statistic con�rms that the PPP relationship holds

between the U.S. dollar and the other currencies for all countries (economic regions). The �� also

seems to work well thus providing an alternative test to the corrected LR test.

7 Concluding remarks

Johansen�s (2000) Bartlett corrected LR test relies on Gaussian innovations. However, in empirical

applications, there is limited information on the distributional form of the innovations. Therefore

there is a need to investigate procedures that do not rest on the Gaussian assumption (or on any

other speci�c distribution).

This paper considers a non-parametric bootstrap Bartlett LR test, and �nds that the bootstrap

Bartlett correction serves two purposes at once. First, it is able to control for the size distortion

generated by a slow speed of adjustment to the cointegrated equilibrium as well as other crucial

parameters of the data generating process. Second, it is robust to violations of the Gaussian

assumption. No matter the distribution of innovations under consideration, (i.e., mixture of

normals, ARCH or GARCH) there is little evidence that the size of the bootstrap Bartlett statistic

depends in any important way on the form of innovations. Together, these results constitute an

important improvement with respect to the analytical Bartlett correction, particularly in light of

the fact that in empirical applications, the true underlying data generating process is not known.
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