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Abstract

A large body of existing literature extensively studied the economic deter-

minants and effects of environmental innovations. However, only a few studies

analyzed the specific features of green technologies in the early phases of the

invention process. The aim of this paper is to investigate knowledge recombi-

nation patterns in the green domain. The focus is on identifying whether and

how different bodies of technology are combined and integrated. Exploiting

a large sample of European patent data, from 1980 to 2012, the paper inves-

tigates the degree of diversity in the knowledge sources and the generation

phase of green inventions. Using the Integration Score as an index of techno-

logical diversity we compare the recombinant features of Green Technologies

with a control sample of “Traditional Technologies”, accurately drawn from

the universe of all patent applications. Empirical results suggest that, after

controlling for a number of typical characteristics which may affect diversity,

Green Technologies systematically show a higher degree of diversity when

compared to non-green ones.

Keywords: Green technologies, environmental innovation, knowledge recombina-

tion, patents, diversity, knowledge space

JEL Classification codes: O31, Q55
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1 Introduction

During the last few decades, we have witnessed increasing attention towards the eco-

nomic analysis of environmental issues. In the transition toward a greener economy,

experts underlined the fundamental role of innovation activities to address climate

change and environmental challenges. Green technologies are increasingly becoming

a major source of technical change since the so-called “green” technological change

is seen as a way to reduce environmental pressure and restore production efficiency

and competitiveness.

The growing literature dealing with the determinants of environmental innova-

tions identifies regulation as a key driver in the generation and adoption of Green

Technologies (henceforth GTs) (Porter and Linde 2011; Carrión-Flores and Innes

2010; Carrión-Flores et al. 2013). Known as “double externality” problem, a major

economic issue in environmental innovations is related to the two types of positive

externalities they produce: knowledge externalities in the research and innovation

phase, leading to market failures and usual sub-optimal investments in R&D; ex-

ternalities in the adoption phase due to the improvement of environmental quality,

making their diffusion socially desirable. In this context, stringent regulatory frame-

works, stimulating the adoption of GTs, contributes to the creation of new market

niches for GTs, thus, providing incentives for advancements in these fields (Arimura

et al. 2007; Brunnermeier and Cohen 2003; Johnstone et al. 2010; Lanoie et al.

2011; Popp 2003; Ghisetti and Quatraro 2015). Therefore, a wide body of litera-

ture focuses on the importance of environmental policy and on understanding the

innovation and diffusion stages of GTs. Less attention has instead been dedicated

to the study of the antecedents of green inventions (Del Ŕıo González 2009) and,

more specifically, on a direct comparison between GTs and other technologies.

The aim of this work is to fill these gaps, providing new evidence on the recom-

bination patterns of GTs in the early phases of the invention process. The paper

contributes to and extends existing literature in several ways. First, we investigate

the dynamics underlying the generation of GTs, focusing on how and to what extent

green invention make use of more diversified knowledge sources and recombine dif-

ferent pieces of knowledge. In the recombinant knowledge framework, considerable

efforts have been dedicated to the study of the cognitive dimension of knowledge

recombination – e.g. at the inventors level – and on the characterization of the

Knowledge Base of different industries (Breschi et al. 2003; Corrocher et al. 2007;

Nesta and Saviotti 2005). Only recently scholars brought to the core of academic

debate the dynamics behind green inventions, showing that GTs tend to arise from

the recombination of a wide array of technological domains (Dechezleprêtre et al.
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2015), often benefiting from the hybridization of both green and non-green tech-

nologies (Orsatti et al. 2020; Quatraro and Scandura 2019; Zeppini and Den Bergh

2011).

The second contribution of the paper is related to the understanding of the spe-

cific features of GTs with respect to “traditional” or non-green technologies. Exist-

ing literature provides evidence that, given their systemic and multi-purpose nature

(Ghisetti et al. 2015), the development of green technologies and new green products

requires a broader range of skills and competences, which can often be far from the

traditional knowledge bases and capabilities (De Marchi 2012; Fusillo et al. 2019).

Recent studies, using patent data, found that green patents are more original and

radical than non-green patents, and generate larger knowledge spillover then their

dirty counterpart (Dechezleprêtre et al. 2015; Barbieri et al. 2020). However, at the

invention-technology level, systematic evidence on the intrinsic higher technological

diversity in green recombinations compared to non-green is still relatively scant.

Relying on the information contained in patent documents registered at the Eu-

ropean Patent Office, this paper explores the evolution of the technological diversity

in the green technology domain, during the period 1980-2012. Exploiting the CPC

classification of technologies, we construct an indicator of diversity of the knowledge

sources (search phase) starting from the co-occurrence of technological classes in

the patent citations ; we instead rely on the co-classification of classes in the focal

patents to calculate the degree of diversity in the production phase (knowledge gen-

eration). Hence, we compare the recombinant technological diversification of green

technologies with a sample of non-green technologies, selected through propensity

score matching, to assess whether and to what extent green technologies draw upon

and recombine more diversified technological knowledge.

Results suggest that green inventions source from a much more diversified set of

technological knowledge compared to inventions with similar characteristics. More-

over, the generation of green technologies involves the recombination of dispersed

pieces of knowledge which are often distant from each other in the technological

space.

The remaining of the paper is organized as follow. Section 2 reviews the relevant

literature. Section 3 describes the data sources, the methodology and the empirical

analysis. Results are presented in Section 4. Section 5 concludes and derives some

policy implications.
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2 Theoretical framework

2.1 Recombination and green technologies

The extensive literature on technological change provides a deep understanding of

the processes of technological diffusion, commercialization and the impact on orga-

nizations and economic growth. Aiming at understanding the underlying patterns

of technological development (Archibugi and Pianta 1994), recent studies, drawing

from evolutionary theory, proposed a view of the inventive activity as the outcome of

knowledge recombination processes (Nelson and Winter 1982; Schumpeter 1934). In

this view, new technologies originate from the recombination of existing and/or new

pieces of knowledge, highly dispersed in the technological space. Thus, given the

cumulative and path-dependent nature of technology, the recombinant knowledge

approach recognizes the importance of studying the structure of the search space and

their impact on the invention process (Fleming and Sorenson 2001; Olsson 2000).

Empirical evidence on specific industries shows that the development pattern

of technologies and the characteristic of their knowledge sources may greatly vary

within and across different sectors and technological fields. For example, Corrocher

et al. (2007) found that ICT inventions may be distinguished into two main groups,

one showing a highly diversified knowledge base and high growth in patenting ac-

tivity, while the other shows a lower rate of growth and less diversified knowledge

sources. Krafft et al. (2011) investigated the dynamics of knowledge generation in

the biotechnology sector, analyzing the structure of its knowledge base.

Following the momentum gained recently by the literature on the determinants

of environmental innovations, several studies applied the recombinant framework

to the understanding of the development pattern in GTs. This strand of research

defines green innovations as complex and sophisticated (Del Ŕıo González et al.

2011). Given their systemic nature, environmental-related innovations have to com-

ply with multiple technical-economic problems, are expected to satisfy a variety of

needs (Florida 1996; Oltra and Jean 2005), and more stringent regulatory require-

ments (Carrillo-Hermosilla et al. 2010). Similarly to other complex technologies,

GTs, being at the technological frontier, result from the integration of different and

heterogeneous technologies and knowledge sources (Petruzzelli et al. 2011). Their

development is characterized by a substantial lack of standards in term of known

accepted solutions, often requiring knowledge and skills distant from the traditional

capabilities (De Marchi 2012; Fusillo et al. 2019). Moreover, recent empirical evi-

dence suggests that GTs are often the results of the hybridization of green and dirty

technologies in new and creative ways (Zeppini and Den Bergh 2011; Dechezleprêtre
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et al. 2015; Colombelli and Quatraro 2019) Because of the intrinsic complexity of en-

vironmental innovations, innovators may not possess internally the required compe-

tences and different knowledge resources to develop GTs. Hence, new and successful

green innovations are more likely to emerge as an outcome of the collective efforts

of organizations, research institutions, universities and teams of inventors. Several

works, indeed, show that creating a wide net of collaborations with external partners

is increasingly becoming essential for successful innovative performances, allowing

to access and share specialized knowledge components residing outside traditional

domains (De Marchi 2012; Fusillo et al. 2019; Petruzzelli et al. 2011). In a study on

Spanish firms, De Marchi (2012) found that firms active in green innovative activities

tend to cooperate with external partners to a greater extent than other innovative

firms. Cainelli et al. (2015), confirming this result, suggest that internal, external

and hybrid resource all are of greater importance in the introduction of new green

product and processes. Orsatti et al. (2020) show that, on average, successful green

inventions are more likely to be generated by team-level work, creatively recom-

bining previous knowledge in original and unprecedented ways. In addition, recent

contributions show that interactions with university and research institutes play a

key role in the development of green technologies (Cainelli et al. 2012; De Marchi

and Grandinetti 2013). Quatraro and Scandura (2019) found that the involvement

of academic inventors exerts a positive impact on the generation of GTs because

their strong scientific background enables to manage recombination across different

technological domains.

Despite this abundance of studies, the empirical literature explicitly addressing

the technological peculiarities of green recombination and extent to which they differ

from more “traditional” technologies is relatively scant. At the technology level,

Dechezleprêtre et al. (2015) compared the intensity of knowledge spillovers in clean

and dirty technologies in energy production and transportation, showing that green

patents receive more citations than their dirty counterparts and tend to be relatively

more general and original. Similarly, Barbieri et al. (2020) focusing on both the

search and the impact space in green and non-green technologies confirm that GTs

tend to be more complex and radical than non-green ones and exert a higher impact

on subsequent inventions.

The present study carries out a finer-grained comparison between the charac-

teristics of green and non-green technologies. The aim is to test for the intrinsic

complexity of green recombinations at the invention-technology level, focusing on

two distinct – and yet interrelated – phases of the inventive process, i.e. the knowl-

edge search phase and the knowledge production phase. We expect that the sources

of knowledge from which GTs emerge are more likely to span technological fields
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that do not necessarily share significant commonalities, thus resulting in higher

technological diversity during the search phase. Similarly, the diversified search,

the hybridization of cognitively distant knowledge pieces, and their successful and

creative integration are likely to lead to a higher degree of diversity of the effectively

recombined knowledge. Therefore, the GTs invention process is characterized by a

higher diversification in the knowledge production phase. According to the proposed

arguments, we formulate the following working hypotheses:

H1: Compared to non-green inventions, GTs exhibit higher technological diversity

of the knowledge sources.

H2: Compared to non-green inventions, GTs exhibit higher technological diversity

of the recombined knowledge.

2.2 Technological diversity

According to the recombinant framework discussed above new technologies arise

from the combination – and integration – of the multiple “bits” of knowledge cumu-

lating in the knowledge bases. Scholars argued that the size and the interdependence

of the knowledge base greatly affect the likelihood of a successful search. Also, the

kind of performed search processes influences the risk of failures and the direction

of technological development. New types of combination and new and distant com-

ponents, increasing the variability and the uncertainty of the invention process,

may lead to a higher rate of failure but also to breakthrough and radical invention

(Fleming 2001; Nooteboom 2000)

This depiction of the knowledge generation process led researchers to stress the

existence of a trade-off between the concepts of diversity and similarity. On the

one hand, similarity in the knowledge bases eases communication and technologi-

cal learning, facilitating the acquisition and integration of heterogeneous resources

(Cantner and Meder 2007). On the other hand, a too strong overlap of competences

may hamper the inventive process, restricting the scope of potential recombination,

that may eventually lead to cognitive lock-in (Nooteboom 2000).

In empirical studies, the concept of technological diversity/similarity has been

operationalized in different ways and by complementary measures. One of the most

popular diversity measures is the Simpson index – usually known in the economics

literature as Herfindahl-Hirschman concentration index – which measure the degree

of concentration when the given elements are classified into types. Recently, a widely

used index is represented by the technological variety, often decomposed into its two

constituting components, the related variety and the unrelated variety. Computed

by using the information entropy index (Shannon 1948), variety measures the extent
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of diversification in the knowledge base, within narrow technological areas – Related

Variety (RU) – and across technologies – Unrelated Variety (UV) – (Frenken et al.

2007).1

Notable advancements in the field of Science and Interdisciplinarity studies pro-

vide a more comprehensive view of diversity, highlighting the importance of consider-

ing the intrinsic difference between knowledge components in constructing diversity

indexes. Following the framework proposed by Rafols and Meyer (2010), diversity

is a conceptual construct that “describes the difference in the bodies of knowledge

that are integrated” (Rafols 2014). According to this framework, diversity can be

characterized by three distinct attributes: i) the number of distinct categories into

which element can be classified, i.e. variety ; ii) the evenness of the distribution of

the elements across the categories, i.e. balance; iii) the degree of difference between

the categories, i.e. disparity. It turns out that an increase in diversity can be deter-

mined, independently, by an increase in each one of its attributes. To clarify, in the

case of a patented invention, the diversity of such an invention increases along with

the number of distinct technological classes to which it is assigned to, a more bal-

anced distribution of those classes, and a higher difference (or technological distance)

between those technologies. Although the decomposition into related and unrelated

allows the variety index to partly take into account disparity by defining two sets

with different disparity (Krafft et al. 2011), the entropy-based index better account

for the number of distinct categories and the evenness of the distribution (Stirling

2007). Thus, in order to account also for the disparity attribute, Stirling (2007) pro-

posed an integrated measure of diversity that weights the distribution of classified

elements across their categories by their cognitive distance. First proposed by Rao

(1982), the Rao-Stirling diversity index (or Integration Score) is increasingly used

in empirical studies on knowledge integration and interdisciplinarity (Rafols 2014).

In order to stress the importance of weighting the distribution of technologi-

cal classes by their cognitive distance – particularly in analyses at the invention-

technology level –, we provide as an illustrative example two patent applications.

The first application (patent number EP2551856B1), filed at the EPO in the 2011

by the Fujikura Ltd., presents the invention of a “high frequency cable and a high

frequency coil which can suppress alternating-current resistance and can suppress

heat generation and power consumption”. The invention protected by the second

patent application (patent number EP2598400B1) is filed in the same year at the

EPO by the Davidson Tech Ltd., and relates to a “high altitude platform for gen-

1The entropy-based technological variety index, related and unrelated, is extensively employed
in the Economic Geography literature to characterize sectoral and/or regional knowledge structure
(see among others Boschma et al. (2012), Content and Frenken (2016), and Quatraro (2010))
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erating electrical energy and delivering information services at altitude, including

telecommunications, observation and positioning services”.2 Exploring the techno-

logical content of the two patents, we notice that according to the CPC technological

classification both patents are assigned to 8 different main technology classes (at the

4-digits level). In terms of diversity attributes, this implies they share the same de-

gree of variety, that equals 8. For what concerns the balance attribute, the entropy

index reveals that their diversity is at very similar levels (entropy-based diversity

equals 2.7329 in the“high frequency cable” patent and 2.8553 in the ”high altitude

platform”). Both patents recombine quite unrelated technologies as indicated by the

higher Unrelated Variety score with respect to that of Related Variety (the UV is

about 2.5 in both patents, while the RV is at around 0.2). Thus, accounting only for

variety and balance, one may conclude that the diversity of the recombined knowl-

edge in the two inventions does not significantly differ. However, when considering

more explicitly disparity in measuring technological diversity a slightly different pic-

ture emerges, at the patent level. The Rao-Stirling diversity of the first patent

is 0.58, while for the second one is at 0.79, placing them, respectively, at the 3rd

and the 1st top quintile of the diversity distribution in our sample of EPO patent

applications from 1980 to 2012.3 Therefore, according to the Integration Score,

the “high altitude platform” patent is considerably more diversified than the first

one. An explanation for this higher diversity score lies in the finer inspection of the

technologies to which the patent is assigned. Indeed, the ”high altitude platform”

invention recombines very different – and cognitively more distant – technologies: it

embraces technologies related to captive balloons, tethered aircraft and special ma-

terials for ropes and cables, to fuel cells for renewable energy, through gas-turbine

plants, rotary generators and reactant storage and supply.

In view of this, in this paper, we measure the technological diversity of green

and non-green inventions by means of the Rao-Stirling diversity index. To the best

of our knowledge, this work represents the first attempt to apply the Integration

Score to the technology field. Accounting simultaneously for the three discussed

attributes of diversity and, indirectly, for the (intrinsic) distance between technolo-

gies, the Rao-Stirling diversity index allows us to give a consistent characterization

of the recombination patterns behind green technological development, providing an

accurate tool to coherently compare green with non-green inventions.

2The full bibliographic data content of the two patents can be accessed by using their reported
patent number through the Espacenet patent search platform, available at https://worldwide.
espacenet.com/. We report in Appendix A the front page of the two patent documents.

3Detailed information on our sample and on the construction of the Rao-Stirling diversity index
are presented in Section 3.
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3 Empirical framework

3.1 Data

Our main source of data is represented by the information contained in patent

documents at the European level. Although it is widely acknowledged that the

use of patent data may have some drawbacks in empirical studies (Griliches 1990;

Pavitt 1985), they still provide a “window on the knowledge economy” (Jaffe and

Trajtenberg 2002), representing a major source of data for studying the development

of technological knowledge (Strumsky et al. 2012).

Patent data are extracted from the “OECD, REGPAT Database, March 2018”

and the “OECD, Citation Database, March 2018”, which collect all the patent

applications filed to the EPO and under the PCT (Patent Co-operation Treaty) from

1977, and all the citation present in the EPO and PCT patent documents published

from 1978 onward.4 Each patent is associated with at least one (usually more)

technological class indicating the subject to which the invention relates. In this

work we exploit the technological subclass of the Cooperative Patent Classification

(CPC)5 at the 4-digit level (CPC-4).

Our analysis focuses on the specific subset of patents applications that belongs to

the green domain. We classify patents as environmentally-related according to the

OECD ENV-TECH (Haščič and Migotto 2015) classification, based on the Interna-

tional Patent Classification (IPC) and Collaborative Patent Classification (CPC).

The search strategy identified 203.388 green patent applications out of a total of

3.109.044 patent applications. Figure 1 plots the dynamics of green patent appli-

cations and the total number of applications over our sampled period 1980-2012.

The figure shows that both the total number of applications and green inventions

steadily increased over time at similar rates. Interestingly, from the 2000s onward

we may notice a deep acceleration in the development of green technologies, which

increased at a much faster pace.

The identified set of environmental-related patents includes quite heterogeneous

inventions, addressing environmental challenges from different perspectives. Ac-

cording to the OECD ENV-TECH classification (Haščič and Migotto 2015), three

macro environmental technology domains can be identified: i) Climate change miti-

gation technologies (related to energy, greenhouse gases, transport and building); ii)

4To account for incomplete counting and usual delays in the filing process we restricted the time-
span to 1980-2012 for patent applications and to 1985-2012 when dealing with patent citations.

5The CPC is a new patent classification system, jointly developed by the European Patent
Office (EPO) and United States Patents and Trademark Office (USPTO). Based on the European
classification system (ECLA), it is a more detailed version of the International Patent Classification
(IPC).
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Figure 1: Dynamics of patent applications in all technologies and in Green Technologies.
Note: Indexed on base year 1980 = 100

Environmental Management technologies (related to air and water pollution, waste

management and soil remediation); iii) Water-related adaptation technologies (re-

lated to water scarcity). Therefore, we disentangle the dynamics shown in Figure 1

by decomposing the series into the three macro domains in which green inventions

can be classified. As we can see from Figure 2 the fastest-growing technologies are

those related to Climate Change Mitigation, which, among others, include renew-

able energy (wind, solar panels, etc.), and electric and hybrid vehicle technologies.

On the other hand, technologies related to Environmental Management and Water-

related Adaptation have been growing at a slower rate, more or less as much as

inventions overall.

3.2 Measuring diversity

3.2.1 Rao-Stirling index

As anticipated in Section 2.2, we measure diversity using an indicator that allows

us to account for the three distinct attributes of diversity, i.e. variety, balance and

disparity. In its simplest formulation, the Rao-Stirling diversity index is given by:
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Figure 2: Dynamics of patents applications in selected environmental-related areas. Note:
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∆a =
∑

i,j(i 6=j)

pipjdij (1)

where pi and pj are the proportions of element i and element j, respectively,

and dij is the cognitive distance between the two. Thus, the Rao-Stirling can be

interpreted as the average cognitive distance between the system’s elements. Since

our unit of analysis is the patent, we proxy system elements with the different

technological classes to which the patent is assigned (co-classification). In turn,

the technological diversity of patent a, is given by the relative proportion of the

4-digit CPC classes within the patent, weighted by their cognitive distance. The

co-citations of patent classes are instead used to compute of the diversity of the

knowledge sources, meaning that the diversity depends on the relative proportion

of technological classes within the backward citations of the focal patents.
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3.2.2 Cognitive distance and normalization

While computing the distribution of classes is straightforward, the choice of the

appropriate cognitive distance measure between technologies can be challenging.

Technological or cognitive distance (often known in existing literature as proximity

or relatedness) can be measured in several ways, each of them reflecting slightly dif-

ferent intuitions on how technologies are related. Considering only measures com-

puted using patent data, we can distinguish between two main broad “families”:

citations and co-classification measure.6 Given that backward citations reveal prior

art, a first straightforward measure of proximity is given by the count of citations

from patents in a class i to patents in class j (Leten et al. 2007). Another com-

mon measure is based on the concept that if two classes are often cited together it

may imply that they possess some degree of relatedness. Referred to as co-citation,

it counts the number of patents that cited patents classified in both class i and j

(Uzzi et al. 2013; Wallace et al. 2009). Elaborating upon the co-citation, another

well-known measure is based on cosine similarity between the vectors counting how

many citations patents in each class make to every other class. Concerning the

co-classification family, the most straightforward proximity measure consists in cal-

culating the frequency with which two classes are assigned to a patent (Dolfsma and

Leydesdorff 2011; Engelsman and Raan 1994; Jeong et al. 2015; Joo and Kim 2010;

Leydesdorff 2008). Similarly, co-occurrence based technological proximity can be

derived by measuring how often two classes appear together in the patenting histo-

ries of “actors” – e.g. inventors, firms, region, countries etc. Belongs to this family

the relatedness measure first introduced by Jaffe (1986), computed using the cosine

similarity between the occurrence of classes in firm’s patents. Then, this approach

has been extended and used for general vectors of co-occurrence of technological

class (Breschi et al. 2003; Kogler et al. 2013). More recently, following the contribu-

tion of Hidalgo et al. (2007), a new group of measures, based on the diversification

behaviour of actors, emerged in the literature. These indexes measure the proximity

between two technological classes in terms of the likelihood of an actor to develop

a Revealed Technological Advantage (RTA) in one class, given that he has already

developed an RTA in the other.

A recent stream of technical literature dealing with technological proximity

claims that all these measures tend to be affected by factors not intrinsically re-

lated to the technologies themselves, that may, in turn, distort the true information

(Alstott et al. 2017). For example, the likelihood of two class co-occurring in the

same patents depends both on the total number of classes in which a patent is

6For an extensive review on the various patent-based distance measures see Yan and Luo (2017).
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classified and on the number of patents associated with a given technology. Teece

et al. (1994) introduced a normalization method (null model) in order to account

for the class size effect, by computing the deviation of the observed co-occurrences

from their expected values.7 However, Bottazzi and Pirino (2011) suggest that in

order to obtain a measure of “true” proximities empirical co-occurrence should be

compared with a null hypothesis in which are preserved both the number of classes

per patent and the number of patents per class. Alstott et al. (2017) expanded

this normalization by controlling also for the temporal effect, as occurrences may

significantly vary over time.

In the present work, we measure technological proximity by using the normalized

co-occurrences between 4-digits CPC codes. To do so, we proceed in a number of

steps. First, from the occurrence of classes in each patent, we construct a symmetric

co-occurrence matrix C in which each cell Cij represents the number of patents

associated with both technology i and j. At this point, to obtain an unbiased

proximity measure between technology, we compare the empirical co-occurrence

matrix with randomized controls generated by a null model as discussed in Alstott et

al. (2017). We first create 1000 randomized versions of the patent-class occurrences

for each year from 1980 to 2012, preserving both the number of classes per patent

and the number of patents per class. Then, we combine the yearly versions into a

single randomized version of the co-occurrence matrix. By dividing the empirical

co-occurrence matrix C by the randomized one we obtain a new matrix E in which

each cell Eij represents the deviation of the observed number of patents in both

technology i and j from its expected value. Lastly, the normalized proximity measure

P between all technologies is derived by applying the cosine index to the normalized

co-occurrence matrix E, in order to obtain a measure ranging between 0 and 1. The

cognitive distance used to weight the proportion of combined technologies in our

Rao-Stirling diversity index is simply obtained by:

dij = 1− pij (2)

Measures of proximity have also been widely used to develop global maps of the

knowledge space which can provide valuable information about promising areas and

7In Teece et al. (1994) the expected value is calculated by randomly assigning firms to industrial
sectors.
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Figure 3: Map of the technology space according to the normalized measure of proximity,
at CPC 4-digit level. Nodes are colored according to the community structure. To ease
visualization, links have been hidden.

the positioning of specific entities.8 As an example, we plot in Figure 3 the map of

the technology space derived from our normalized technological proximity measure.

The map of technological space is graphically represented as a network in which

each node is a technological class and links represents their proximity.

3.3 Methodology

3.3.1 Propensity score matching

Our analysis aim at comparing the degree of diversity of green vis-à-vis non-green

inventions. This task requires the identification of a coherent “control group” con-

sisting of non-green inventions which are expected to be similar to the green ones.

We identify the control group by performing a propensity score matching, as it allows

us to take into account all the technological areas covered by green inventions. The

propensity score measures the probability of a patent belonging to the green tech-

nology domain, given a set of patent-level observable characteristics. It is recovered

through the estimation of a probabilistic choice model where the dependent variable

equals 1 when the patent is green and 0 otherwise. Given the binary nature of the de-

pendent variable, to estimate the probabilistic model we implement a probit model.

For what concerns the choice of the covariates, we follow prior literature (Appio

8See, for example, the global map of science in Leydesdorff and Rafols (2009).
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et al. 2017) and we include in the model a rich set of predictors at the patent level:

the patent scope, defined as the number of distinct technology classes the invention

is assigned to; the family size, proxied by the number of patent offices at which a

given invention has been protected; the number of backward citations ; the number

of citations to non-patent literature (e.g. scientific paper, conference proceeding,

databases); the number of claims included in the patent; the number of citations

received (forward citations); the number of inventors ; the number of applicants. We

also include in the model a set of dummies controlling for the macro geographical

region from which the patents originate, exploiting the information on the inventors’

addresses.9 Lastly, we split the raw sample of patents into 35 sub-samples on the

basis of the priority year assigned to each patent application and performed the

propensity score matching individually for each year. The 1:1 matching allowed us

to select a control group of 203.388 non-green patents (out of 2.905.656 potential

controls) matched with the same number of green patents. Details on the matching

outcome and covariates balance are presented in Table 1, which describes the vari-

ables employed to estimate the propensity score and the mean comparison before

and after the matching. Before the matching patent characteristics differ substan-

tially between the green and non-green patents, supporting the need for selecting an

ad-hoc group. However, the propensity score matching yields satisfactory results,

as the difference in means between the two groups significantly decreases after the

matching.10

3.3.2 Green VS non-green

To empirically test the difference between the green and the control group of non-

green inventions we estimate the following simple model:

(3)∆i = α + β1greenPati + β2inventorsi + β3applicantsi
+ β4backCitationsi ++β5familySizei + IPC35 + ωi + ti + εi

where ∆i, the dependent variable, is the diversity of patent i or the diversity in

its patent citations. greenPati is our focal explanatory variable, and it is a dummy

9We identified 16 macro-regions: Australia and New Zealand, Central Asia, Eastern Asia, South-
ern Asia, South-eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe,
Western Europe, Northern America, Latin America and the Caribbean, Micronesia, Polynesia,
Northern Africa, Sub-Saharan Africa.

10An identical propensity score matching procedure is performed to select the control group for
the analysis of diversity in patent citations. The procedure allows to match 103.161 green patents
with the same number of non-green ones. This reduction in the sample size is due to the exclusion
of patents for which it has not been possible to retrieve the technology classes assigned to its
cited patents. The comparison between pre-matching and post-matching yields similar satisfactory
results.
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Table 1: Mean comparison of patent characteristics between Green patents (N = 203.388)
and controls patents (raw sample 2.905.656) before and after the Propensity Score Match-
ing.

Mean before Matching Mean post Matching

Controls Green Controls Green

Patent Scope 1,886695 2,130042 2,191157 2,184313
Family Size 5,527260 5,413714 5,531344 5,641542
Backward Citations 5,502565 6,179672 5,894114 5,961517
Non-patent Literature 1,523676 1,617449 1,512002 1,531093
Claims 13,219684 12,840990 12,697126 12,903529
Forward Citations 1,082778 1,199253 1,325526 1,430345
Inventors 2,579484 2,694697 2,595871 2,660108
Applicants 1,077386 1,091549 1,084843 1,090831

variable taking value 1 if the patent is classified as green and 0 otherwise. The

model includes controls for the number of distinct inventors and applicants in each

patent. backCitationsi and familySizei, control, respectively, for the total number of

citations made by the focal patent and the size of the patent family, as factors that

may be associated to the degree of diversity. To account for potential geographical

heterogeneity and time-varying effects, we include a set of dummies controlling for 16

world macro-regions (ωi) and a set of time dummies corresponding to a 5-year time

window (ti). To rule out any possible heterogeneity in technology areas remaining

after the propensity score matching, we included a control for the main technology

domain assigned to each patent based on the 35-technology fields as in Schmoch

(2008) (IPC35). Our dependent variable, the Rao-Stirling technological diversity,

is bounded between 0 and 1 by construction. Existing empirical literature does

not provide homogeneous consensus regarding the best econometric specification

with such dependent variables (Argyres and Silverman 2004; Laursen and Salter

2006). Hence, the main estimations are carried out through OLS regressions to

ease interpretation. A robustness check employing censored Tobit regressions as an

alternative model is reported in Section 4.3.

4 Results

Descriptive statistics of the variables of interest are reported in Table 2. Figure

4 and Figure 5 show the evolution of the average diversity of green and non-green

inventions, respectively in the production phase and the search phase. From a visual
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Table 2: Descriptive Statistics

N Mean St. Dev. Min Max

Diversity 406,776 0.29612 0.20733 0 0.82074
Inventors 406,776 2.62799 1.88469 1 60
Applicants 406,776 1.08784 0.38829 1 18
BackCitations 406,776 5.92782 9.32448 0 1,011
FamilySize 406,776 5.58644 3.93422 1 55
Claims 406,776 12.80033 9.30636 1 442

inspection, it is evident that the average diversity in green patents is significantly

and persistently higher than the diversity in the control group. Diversity in green

recombinations slightly decreases during the first 15 years of our sample, while a clear

increasing trend is identifiable from 2000 onward. On the other hand, the diversity in

the knowledge sources of green invention increased through all the period considered.

Figure 4 and 5 provide preliminary interesting insights on the more diversified nature

of knowledge that characterize the recombination activities of green inventions.

4.1 Are GTs more diversified?

Table 3 reports the main results of our empirical analysis. Columns 1-3 test whether

green inventions do exhibit higher levels of technological diversity in the recombined

knowledge, thus focusing on the knowledge production phase. Columns 4-6 refer

to the diversity in the recombined knowledge sources, thus estimating the diver-

sity premium of green inventions during the knowledge search phase. Controls are

gradually added in models (2) and (3), and models (5) and (6). All models in-

clude time, regional and main technology effects, and reported standard errors are

heteroskedastic-robust.

For what concerns the diversity in the production phase, the green patent dummy

has a positive and strongly significant coefficient across all specifications. The posi-

tive and significant coefficients on inventors and applicants in both columns 2 and 3

suggest that, on average, teams of 2 or more inventors (and multiple applicants) are

able to generate inventions with higher technological diversity. This is in line with

existing literature showing that collaborations allow to exploit synergies and knowl-

edge exchanges between partners, resulting in highly diversified and more valuable

inventions. The GTs premium in terms of technological diversity is quite stable at

around 0.20 also when controlling for the number of backward citations, the num-

ber of claims made in the patent and the family size, which all are significantly

associated with higher diversity in recombination. This first set of results confirms
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Figure 4: Average diversity of recombination (knowledge production phase) in green and
non-green inventions (control group)

our first hypothesis, indicating that, on average, GTs do recombine more diversified

pieces of knowledge as compared to similar but non-green inventions.

Consistent with H2 results reported in columns 4-6 of Table 3 indicate that,

in comparison to non-green inventions, GTs draw from more diversified knowledge

sources, thus exhibiting higher technological diversity in the knowledge search phase.

The green premium is positive and statistically significant, with an estimated coef-

ficient slightly lower in magnitude. The result holds when controls are added to the

model. Controls retain their sign and significance, with the exclusion of the number

of applicants and patent family size, for which no statistically significant coefficients

are found.

4.2 Are all GTs domains more diversified?

The results presented in Section 4 confirm that green inventions, on average, both

recombine more diversified technologies and their knowledge sources span a wide

range of distant technology areas. However, as anticipated in Section 3.1 the set

of GTs itself includes technologically heterogeneous inventions that try to address

environmental challenges from different perspectives. Consequently, in order to test
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Figure 5: Average diversity of knowledge sources (knowledge search phase) in green and
non-green inventions (control group)

whether and to what extent the green premium may differ among environmental

domains, we categorize green inventions as belonging to the three macro environ-

mental categories and split the sample of patents accordingly. Following the same

procedure employed for the whole sample, we identified an ad-hoc control group on

non-green inventions for each set of patents. Then, we re-run our regression analysis

in order to estimate whether technological diversity in recombination differs between

green and non-green inventions, within the three macro environmental domains.

Results of econometric estimation for the three selected environmental domains

are reported in Table 4. Columns 1-3 shows that the diversity premium of Climate

change mitigation technologies reaches 0.22 and it is statistically significant across

the specifications. Environmental Management technologies, also, are significantly

associated with a higher degree of diversity compared to their control group, with

slightly lower a coefficient (columns 4-6). Lastly, the premium in terms of diver-

sity of Water-related adaptation technologies reduces at around 0.12 (columns 7-9),

still with statistically significant coefficients. In sum, the findings of Table 4 sug-

gest that, when categorizing green inventions in macro environmental domains, GTs

still exhibit a higher degree of diversity in the technological recombination process,

though at different magnitudes. Interestingly, the higher premium found for Climate
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change mitigation technologies over Environmental Management and Water-related

adaptation – and Environmental Management over Water-related adaptation – is

consistent with the dynamics of green patent application shown in Figure 2. In-

deed, climate change mitigation technologies, by including technologies related to,

among other, renewable energy or electric vehicle, experienced the fastest rate of

development, particularly from the 2000s onward.
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Table 3: OLS Regression Results of GTs on Technological Diversity with geographical, time and main technology controls.

Diversity in recombination Diversity in knowledge sources

(1) (2) (3) (4) (5) (6)
GreenPat 0.20032∗∗∗ 0.20013∗∗∗ 0.19853∗∗∗ 0.08530∗∗∗ 0.08501∗∗∗ 0.08384∗∗∗

(0.00068) (0.00068) (0.00068) (0.00107) (0.00107) (0.00107)

Inventors 0.00176∗∗∗ 0.00103∗∗∗ 0.00186∗∗∗ 0.00112∗∗∗

(0.00016) (0.00016) (0.00024) (0.00025)

Applicants 0.00196∗∗∗ 0.00226∗∗∗ 0.00197 0.00181
(0.00074) (0.00074) (0.00121) (0.00120)

BackCitations 0.00041∗∗∗ 0.00174∗∗∗

(0.00003) (0.00004)

FamilySize 0.00193∗∗∗ −0.00018
(0.00008) (0.00013)

Claims 0.00068∗∗∗ 0.00069∗∗∗

(0.00003) (0.00005)

Constant 0.19829∗∗∗ 0.19351∗∗∗ 0.17088∗∗∗ 0.21729∗∗∗ 0.21198∗∗∗ 0.19686∗∗∗

(0.00340) (0.00349) (0.00354) (0.00556) (0.00571) (0.00580)

Time Controls Yes Yes Yes Yes Yes Yes
Region Controls Yes Yes Yes Yes Yes Yes
IPC35 Controls Yes Yes Yes Yes Yes Yes
Observations 406,775 406,775 406,775 206,321 206,321 206,321
R2 0.24027 0.24053 0.24298 0.09875 0.09903 0.10677
Adjusted R2 0.24017 0.24042 0.24287 0.09851 0.09878 0.10651
F Statistic 2,338.66200∗∗∗ 2,259.80400∗∗∗ 2,175.68900∗∗∗ 410.91630∗∗∗ 397.74550∗∗∗ 410.93280∗∗∗

Note: Heteroskedastic-Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: OLS Regression Results of selected environmental domains on Technological Diversity with geographical, time and main technology
control

Diversity in recombination

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ClimateChange 0.21937∗∗∗ 0.21927∗∗∗ 0.21841∗∗∗

(0.00081) (0.00081) (0.00081)

EnvManagement 0.18268∗∗∗ 0.18249∗∗∗ 0.17948∗∗∗

(0.00155) (0.00155) (0.00155)

WaterRelated 0.11678∗∗∗ 0.11708∗∗∗ 0.11807∗∗∗

(0.00346) (0.00346) (0.00345)

Inventors 0.00077∗∗∗ 0.00029 0.00283∗∗∗ 0.00197∗∗∗ 0.00323∗∗∗ 0.00225∗∗∗

(0.00019) (0.00019) (0.00031) (0.00031) (0.00056) (0.00056)

Applicants 0.00021 0.00042 0.00188 0.00241∗ −0.00145 −0.00070
(0.00089) (0.00089) (0.00132) (0.00131) (0.00171) (0.00170)

BackCitations 0.00032∗∗∗ 0.00129∗∗∗ 0.00008
(0.00004) (0.00010) (0.00006)

FamilySize 0.00104∗∗∗ 0.00294∗∗∗ 0.00227∗∗∗

(0.00009) (0.00016) (0.00025)

Claims 0.00056∗∗∗ 0.00096∗∗∗ 0.00062∗∗∗

(0.00004) (0.00007) (0.00009)

Constant 0.20172∗∗∗ 0.20038∗∗∗ 0.18481∗∗∗ 0.19349∗∗∗ 0.18758∗∗∗ 0.14819∗∗∗ 0.19485∗∗∗ 0.19097∗∗∗ 0.17245∗∗∗

(0.00444) (0.00454) (0.00460) (0.00659) (0.00674) (0.00687) (0.01325) (0.01338) (0.01344)

Time Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Region Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
IPC35 Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 243,929 243,929 243,929 138,611 138,611 138,611 24,234 24,234 24,234
R2 0.30771 0.30776 0.30900 0.17259 0.17313 0.17776 0.13080 0.13202 0.13685
Adjusted R2 0.30755 0.30759 0.30883 0.17226 0.17279 0.17740 0.12886 0.13001 0.13474
F Statistic 1,970.84300∗∗∗1,902.10200∗∗∗1,817.51900∗∗∗525.47240∗∗∗ 508.95280∗∗∗ 499.21720∗∗∗ 67.38172∗∗∗ 65.66423∗∗∗ 64.95971∗∗∗

Note: Heteroskedastic-Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.3 Robustness checks

In this section, we report some additional estimates in order to check for the robust-

ness of our empirical analysis. First, since our dependent variable is, by construction,

bounded between 0 and 1, we test for the robustness of our results to the choice

of the estimation model, by re-estimating our main model using left-censored Tobit

Regressions.11 Tobit regressions estimates, presented in Table 5, largely confirm our

previous results. Columns 1-3 refer to diversity in the knowledge production phase,

while columns 4-6, refer to the diversity in knowledge sources. In line with the OLS

estimations, technological diversity is significantly higher in green patents as com-

pared to non-green and the diversity in recombination is higher in magnitude with

respect to the diversity in citations.

In Section 2.2 we extensively stress the importance of measuring technological

diversity by considering all its intrinsic attributes, especially when working at the

narrow technology-invention level. Nevertheless, we expect that the direction of the

hypothesized relationships should be, at least in principle, robust to the choice of

the diversity measure, as long as such measures are intended to capture the diver-

sity construct. Therefore, we further check the robustness of our analysis by using

alternative measures of technological diversity. To do so, we include a dependent

variable in the regressions the Entropy index and its decomposition into Related

Variety (RV) and Unrelated Variety (UV). The three alternative measures are nor-

malized between 0 and 1 by dividing by log2(N) – where N is the total number

of existing technology classes – in order to obtain coefficients comparable in mag-

nitude to those of our main estimation. The results are presented in Table 6 and,

overall confirm our main findings. As reported in columns 1-3, GTs are associated

with higher levels of entropy-based diversity, in comparison to non-green inventions.

Similar results hold when RV (columns 4-6) and UV (columns 7-9) are employed as

alternative diversity measures. Interestingly, the green diversity premium in terms

of UV is higher in magnitude compared to that in terms of RV, and it is very

close to the estimated coefficient in the entropy-based diversity model, suggesting

that the higher overall diversity of GTs seems to be mainly guided by unrelated

diversification.

11It is worth stressing that, since the theoretical maximum of the dependent variable (equal to
1) is never reached in the data, therefore, the model is not right-censored.
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Table 5: Tobit Regression Results of GTs on Technological Diversity with geographical, time and main technology controls.

Diversity in recombination Diversity in knowledge sources

(1) (2) (3) (4) (5) (6)

GreenPat 0.23987∗∗∗ 0.23963∗∗∗ 0.23922∗∗∗ 0.11846∗∗∗ 0.11801∗∗∗ 0.11769∗∗∗

(0.00075) (0.00075) (0.00074) (0.00108) (0.00108) (0.00108)

Inventors 0.00376∗∗∗ 0.00251∗∗∗ 0.00351∗∗∗ 0.00219∗∗∗

(0.00020) (0.00020) (0.00029) (0.00029)

Applicants 0.00396∗∗∗ 0.00374∗∗∗ 0.00652∗∗∗ 0.00576∗∗∗

(0.00097) (0.00094) (0.00147) (0.00146)

BackCitations 0.00073∗∗∗ 0.00224∗∗∗

(0.00003) (0.00005)

FamilySize 0.00293∗∗∗ −0.00009
(0.00008) (0.00015)

Claims 0.00092∗∗∗ 0.00066∗∗∗

(0.00003) (0.00006)

Time Controls Yes Yes Yes Yes Yes Yes
Region Controls Yes Yes Yes Yes Yes Yes
IPC35 Controls Yes Yes Yes Yes Yes Yes

Observations 406,775 406,775 406,775 206,321 206,321 206,321
Log-likelihood -85371.68 -85185.58 -84279.59 -43546.18 -43457.08 -42462.82

Note: Heteroskedastic-Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: OLS Regression Results of GTs on Entropy, Related and Unrelated Variety, with geographical, time and main technology controls.

Dependent variable:

Entropy RV UV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

GreenPat 0.07322∗∗∗ 0.07307∗∗∗ 0.07228∗∗∗ 0.00965∗∗∗ 0.00959∗∗∗ 0.00945∗∗∗ 0.06356∗∗∗ 0.06348∗∗∗ 0.06283∗∗∗

(0.00025) (0.00025) (0.00025) (0.00015) (0.00015) (0.00015) (0.00022) (0.00022) (0.00022)

Inventors 0.00132∗∗∗ 0.00096∗∗∗ 0.00062∗∗∗ 0.00055∗∗∗ 0.00070∗∗∗ 0.00041∗∗∗

(0.00006) (0.00006) (0.00003) (0.00003) (0.00005) (0.00005)

Applicants 0.00110∗∗∗ 0.00125∗∗∗ 0.00008 0.00010 0.00102∗∗∗ 0.00115∗∗∗

(0.00027) (0.00027) (0.00016) (0.00016) (0.00024) (0.00024)

BackCitations 0.00022∗∗∗ 0.00009∗∗∗ 0.00013∗∗∗

(0.00001) (0.00001) (0.00001)

FamilySize 0.00094∗∗∗ 0.00013∗∗∗ 0.00081∗∗∗

(0.00003) (0.00002) (0.00003)

Claims 0.00034∗∗∗ 0.00008∗∗∗ 0.00026∗∗∗

(0.00001) (0.00001) (0.00001)

Constant 0.06113∗∗∗ 0.05794∗∗∗ 0.04667∗∗∗ 0.00374∗∗∗ 0.00271∗∗∗ 0.00049 0.05739∗∗∗ 0.05523∗∗∗ 0.04618∗∗∗

(0.00126) (0.00129) (0.00131) (0.00074) (0.00076) (0.00078) (0.00112) (0.00115) (0.00117)

Time Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Region Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
IPC35 Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 406,775 406,775 406,775 406,775 406,775 406,775 406,775 406,775 406,775
R2 0.27416 0.27515 0.27942 0.09901 0.09974 0.10057 0.25468 0.25506 0.25851
Adjusted R2 0.27407 0.27505 0.27932 0.09889 0.09961 0.10044 0.25457 0.25496 0.25840
F Statistic 2,793.21800∗∗∗2,708.51800∗∗∗2,628.59500∗∗∗812.65530∗∗∗ 790.53990∗∗∗ 757.97270∗∗∗ 2,526.81800∗∗∗2,443.14400∗∗∗2,363.30500∗∗∗

Note: Heteroskedastic-Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Conclusions

By exploiting a rich dataset of European patent applications from 1980 to 2012, the

present paper investigates the recombination patterns of Green Technologies in or-

der to assess whether and to what extent the generation of green knowledge involves

higher recombinatorial complexity with respect to more “traditional” inventions.

Based on prior evidence, we hypothesize that the development of GTs is more likely

to require knowledge and skills distant from traditional knowledge bases, which,

in our framework, translates into a higher technological diversity in comparison to

non-green inventions. Two early phases of the invention process are taken into ac-

count: the knowledge search phase, where the diversity in technological content of

source of knowledge is considered, and knowledge production phase, where the focus

is on the pieces of knowledge effectively recombined. The paper operationalizes the

concept of technological diversity by using a comprehensive measure of diversity,

which weights the co-occurrence of technologies within patented inventions with

a normalized measure of cognitive distance between the technologies. An ad-hoc

set of non-green patents is identified through a 1:1 propensity score matching and

employed as control group in the empirical analysis. We find evidence that green

inventions are more likely to recombine more diverse pieces of knowledge, spanning

a wider range of technology areas. Empirical results also corroborate our second

hypothesis according to which, during the search phase, green technologies draw

upon more diversified knowledge sources, involving technologies which are often

cognitively far from each other. In addition, in both phases of the invention process,

diversity is positively influenced by the number of inventors and applicants, confirm-

ing that the involvement inventors teams and pooled applicants, often with different

backgrounds, may allow the recombination of different and distant technological

domains, generating more complex and (possibly) successful inventions.

Our study is not free from caveats. The first limitation relates to the use of patent

data and technological classes in properly identifying green technologies. Patents

represent a relevant but partial subset of the wide range of the types and forms

of knowledge that are relevant for scientific, technological and economic advance.

However, the fine-grained information contained in patent documents still represent

a highly reliable tool to study technological dynamics (Griliches 1981; Strumsky

et al. 2012). A second limitation concerns the geographical dimension of green tech-

nological development. We use the information of inventors address to geo-localize

patents and include controls for the broad regions the invention originates from.

Yet, notwithstanding the increasing worldwide efforts in raising awareness of the

environmental challenges, regions and countries may still highly differ in terms of
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policy response. This, in turn, affects their green technological advancements and

the propensity toward greener innovative solution, as confirmed by the vast litera-

ture on the effect of stringent environmental policies on environmental innovations

(Arimura et al. 2007; Carrión-Flores and Innes 2010; Ghisetti and Quatraro 2015;

Johnstone et al. 2010; Lanoie et al. 2011; Popp 2003). Future research might adopt

explicitly an environmental policy perspective and investigate the relationship be-

tween region/countries environmental policies and the technological complexity of

green technologies. Third, our empirical framework does not allow to fully address

potential concerns regarding the identification of a comparable set of non-green in-

ventions. This is due, for example, to the possibility that, in addition to the ex-ante

patent characteristics included in our propensity score matching, other factors, such

as the development stage of technologies, might affect the correct identification of

a control group. A comparison of inventions along their technological life cycle

deserves further investigation going beyond the scope of this paper.

Nevertheless, this work importantly adds to the academic debate by moving a

step further in the understanding of the antecedents of GTs and the dynamics under-

lying their generation. Building on recent academic developments on the intrinsic

complexity of GTs, this paper digs into the technological content of the environ-

mental invention. It provides novel empirical evidence on the higher technological

diversity in green recombinations with respect to traditional inventions, confirming

and supporting the importance of investigating GTs peculiarities.

Our findings lead to important policy implications. The work contributes to the

debate on the optimal policy intervention to stimulate advancements in GTs in order

to reduce environmental pressures and restore production efficiency and competi-

tiveness. The capacity of green patents to collect different pieces of knowledge and

to recombine them in a more effective way than other invention is a specific point to

focus on when distributing public resources to foster innovation. The higher tech-

nological diversity found in green inventions supports the need to implement R&D

policies targeted specifically at boosting environmental technologies. Moreover, the

wide array of different and distant technologies recombined in GTs, calls for efforts

in stimulating interactions and collaborations in order to assess external specialized

knowledge. In line with recent policy instruments aimed at promoting interdisci-

plinarity in science, policymakers may find ways to further stimulate the generation

of GTs by boosting the creation of network dynamics between heterogeneous actors,

endowing them with the different competencies and skills required to successfully

recombined diversified technological knowledge. Finally, a deeper identification of

the more diversified technological domains from which the recombined knowledge in

GTs comes from might also support the design of appropriate policy instruments to
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better exploit potential knowledge hybridizations and technology spillover effects.
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the determinants of environmental technology investments. A panel-data study

of Spanish industrial sectors”. In: Journal of Cleaner Production 19.11, pp. 1170–

1179.

Dolfsma, W. and L. Leydesdorff (2011). “Innovation systems as patent networks:

The Netherlands, India and Nanotech”. In: Innovation: Management, Policy and

Practice 13.3.

29



Engelsman, E. C. and A. F. van Raan (1994). “A patent-based cartography of tech-

nology”. In: Research Policy 23.1, pp. 1–26.

Fleming, L. (2001). “Recombinant uncertainty in technological search”. In: Manage-

ment science 47.1, pp. 117–132.

Fleming, L. and O. Sorenson (2001). “Technology as a complex adaptive system:

Evidence from patent data”. In: Research Policy 30.7, pp. 1019–1039.

Florida, R. (1996). “Lean and Green: The Move to Environmentally Conscious Man-

ufacturing”. In: California Management Review 39.1, pp. 80–105.

Frenken, K., F. Van Oort, and T. Verburg (2007). “Related variety, unrelated variety

and regional economic growth”. In: Regional Studies 41.5, pp. 685–697.

Fusillo, F., F. Quatraro, and S. Usai (2019). “Going Green: Environmental Reg-

ulation, eco-innovation and technological alliances”. In: Working paper series

CENTRO RICERCHE ECONOMICHE NORD SUD (CRENoS) 07, pp. 1–32.

Ghisetti, C., A. Marzucchi, and S. Montresor (2015). “The open eco-innovation

mode. An empirical investigation of eleven European countries”. In: Research

Policy. Vol. 44. 5, pp. 1080–1093. isbn: 0048-7333.

Ghisetti, C. and F. Quatraro (2015). “Regulatory push-pull effects on innovation :

an evaluation of the effects of the REACH regulation on patents in the chemical

sector”. In: WWWforEurope Working Paper no 91 91.

Griliches, Z. (1981). “Market value, R&D, and patents”. In: Economics Letters.

— (1990). Patent Statistics as Economic Indicators: A Survey. isbn: 00220515.
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Figure A1: Front page of the ”High Frequency Cable” patent document. Source: https:
//worldwide.espacenet.com/
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Figure A2: Front page of the ”High Altitude Platform” patent document. Source: https:
//worldwide.espacenet.com/
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