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1 Introduction

During the last few decades economic systems have been characterized by a high degree of globalization.

The literature on urban studies supports the view that the process of internationalization in �nancial and

service sectors has created "global cities" or world cities (see, for example, Sassen, 1991; Dehesh et al.,

2000). These cities are "global hubs" which are instrumental in supporting the operation of the global

�nancial and trade systems.

The city of London has long been considered a global metropolis (see for example Sassen, 2003).

London�s inzuence today draws on the city�s long-standing status as a centre of international power, �rst

as a trading centre then as an imperial capital. The globalization process was enhanced in the 1980s

by the deregulation of the �nancial market promoted by the Prime Minister Margaret Thatcher which

re-consolidated London as a world class �nancial center. After the 1980s the supremacy of the City

as global �nancial center has been unchallenged. In this respect, the city of London was consistently

ranked at the Global Financial Centres Index (GFCI) in the last ten years. 1Moreover, the City also

constitutites an important innovation hub, it hosts high quality educational institutions and features high

degree cultural diversity. In this respect, the city of London was ranked at the top of the Global Power

City Index (GPCI) in 2019 and it was in the same position for the last few years in a row.2

The positive agglomeration e¤ects in the productive sphere and the global city status that London

enjoys, have taken their toll in the cost of housing. In the literature, dedicated empirical studies of

the dynamics of housing markets in global cities are still rare. However theoretical works support the

view that housing market cycles in large metropolitan areas feature asymmetric behaviour. Consensus

literature shares in common that in densely populated urban areas the rigidity of the supply side plays a

major role in housing market cycles. According to this line of research the high real cost of construction

and strict regulations on new developments introduce unpriced supply restrictions. For instance, Capozza

et al. (2004) show that stricter regulations on new development such as minimum lot size, or regulatory-

induced delays increase the cost of new housing (both in absolute terms and in relation to existing housing)

and reduce the ability of builders to respond quickly to demand shocks. Similarly, Mayer and Somerville

(2000) show that construction is less responsive to price shocks in markets with more local regulation.

The fact that an inelastic housing supply in large metropolitan areas induces high price volatility is

broadly consistent with the literature on housing market bubbles. According to this literature, bubbles

are seen as a temporary increase in optimism about future prices; hence, in metropolitan areas where

1The GFCI is a ranking of the competitiveness of �nancial centres based on over 29,000 �nancial centre assessments.
The ranking is an aggregate of indices from �ve key areas: �Business environment�, �Financial sector development�,
�Infrastructure factors�, �Human capital�, �Reputation and general factors�.

2The GPCI index ranks cities around the world according to a number of parameters targeted at measuring the global
in�uence of a given city. Metropolises ranked at the top of the index have in common the fact that: i ) they are headquarters of
several multinational corporations, ii) they are major �nancial or manufacturing centres, iii) they are important laboratories
of new ideas and innovation hubs in business, economics, and culture, iv) they host high quality educational institutions,
including renowned universities with international student attendance and world class research facilities, v) they feature
high degree of diversity in term of language, culture, religion, and ideologies.
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the housing supply is less elastic, demand shocks have more of an e¤ect on price and less of an e¤ect on

new construction. In an in�uential paper, Gleaser et al. (2008) present a theoretical model of housing

bubbles where it is postulated that housing markets with an elastic supply have fewer and shorter bubbles

and smaller price increases. It is probably not a coincidence that London also scores highly in the UBS

Global Real Estate Bubble Index3 (see UBS Global Real Estate, 2018), which estimates the probability

of a bubble bursting in a given metropolis at a given point in time.

Against this background, the main purpose of this paper is to model the cyclical behaviour of the

housing market in London. We are particularly interested in investigating if the process of �nancial

globalisation has played a role in shaping the dynamics of the real estate market. In an interesting work,

Badarinza and Ramadora (2018) �nd that foreign demand is an important part of the explanation for

house price dynamics in London.4Similarly, Favilukis et al. (2013) suggest that real estate in global cities

constitutes a class of asset substitutes for low-yielding government bonds and it is one in which private-

equity �rms, investment trusts and individual investors tend to invest. Accordingly, the question we

address in this paper is: Do the real estate prices at the top end of the housing market exhibit di¤erent

dynamics from that of houses located in other neighbourhoods of the city? In other words, does an

explicit treatment of global investment need to be accounted for when modelling the top end of London�s

real estate market? Similarly, Favilukis et al. (2013) suggest that real estate in global cities constitutes

a class of asset substitutes for low-yielding government bonds and it is one in which private-equity �rms,

investment trusts and individual investors tend to invest. Accordingly, the question we address in this

paper is: Do the real estate prices at the top end of the housing market exhibit di¤erent dynamics from

that of houses located in other neighbourhoods of the city? If it is actually the case that the top end

market constitutes a safe-haven investment linked with foreign political and economic crises, we should

see di¤erent dynamics for the houses in this segment of the market from those in other neighbourhoods.

In addition, a peculiarity of world cities such as London is that house price dynamics are driven by both

local and global investment demand. Strong pressure on the demand side and an inelastic supply make

these cities vulnerable to housing market bubbles. Accordingly, the second issue that we address in this

paper is the following: How do we model the asymmetric cycles of real estate prices in global cities such

as London? In other words, what kind of econometric model would best be able to capture asymmetric

adjustments to house prices? Finally, the housing market dynamics in global cities are partly related to

structural factors. Rapidly increasing property prices in global cities re�ect the con�uence of local factors

(supply constraints, regulations and zoning) and global trends (the role of foreign investors; the impact of

highly- and low-skilled migration from other parts of the country and abroad). The misalignment between

3The UBS Global Real Estate Index gauges the risk of a property bubble according to the pattern of indicators that
account for the decoupling of local prices from local incomes and rents, or indications of excessive lending and construction
activity.

4To illustrate the scale of the phenomenon Badarinza and Ramadora (2018) use a property-level dataset for London
and document that at least 85% of residential real estate purchases by foreigners in London occur through a corporation
(a preferred vehicle over the period, for tax reasons) and are routed through o¤-shore special purpose vehicles registered
in regions such as Gibraltar, Cyprus and Panama, with the e¤ect that the ultimate source of the capital is essentially
untraceable.
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strong demand and inelastic supply creates asymmetric cycles. However, in locations where the housing

supply is not constrained, households can buy at construction costs so that, instead of growth in house

prices, these areas should exhibit growth in the housing supply. Therefore, the �nal issue investigated in

this paper is: To what extent do house price dynamics in London re�ect the developments in other large

cities in the UK? Answering these questions is important, since housing markets in most global cities

share many of the same characteristics due to their connectedness and shared experiences of globalization

(see for example Stevenson et al., 2014).

The present paper extends the existing literature in several ways. First, we contribute to the literature

on modelling housing market cycles in global cities. In this paper the generalised smooth transition model

(GSTAR) suggested in Canepa and Zanetti Chini (2016) (and see also Zanetti Chini, 2018; Canepa et

al. 2019) is used to estimate house price dynamics for the sample under consideration. The authors

propose a STAR-type model where the logistic smooth transition function has two parameters governing

the two tails of the sigmoid function in the nonlinear component of the model. The advantage of the

proposed parameterisation with respect to the ordinary smooth transition models (STAR) is that the

resulting speci�cation can model the tails of the logistic function independently and the rate of change

in the left tail of the transition function can be di¤erent from the counterpart in the right tail. Using

Monte Carlo simulations we show that when properly speci�ed the GSTAR model is able to reproduce

the actual characteristics of the real data such us the duration and amplitude of the cycle. Comparing

the GSTAR model with other linear and nonlinear speci�cations, it is also found that models which allow

for asymmetric adjustments according to whether prices have been rapidly rising or falling deliver better

forecasts than standard linear models.

Second, we �nd that within the capital city, real estate located in neighbourhoods at the top-end of

the market has more pronaunced asymmetrical cyclical features with shorter expansion and contraction

phases and deeper downturns. These �ndings support the view that global factors play a role in shaping

housing market dynamics. Economists have long debated the role of international capital �ows and

�nancial market liberalization in explaining cycles in house prices and more generally in asset market

volatility. However, the results in the literature are still controversial. Some authors support the view

that international developments have placed the property sector in a wider context where major property

cycles are in�uenced by various conditions in the international economy (see for example Srivatsa and Lee,

2012; Dehesh et al., 2000). Other empirical studies, however, �nd no evidence of two-way interdependence

between the property sector and the process of deregulation and the integration of diverse economies (see

for example McAllister, 2001).

Finally, our results show that house price series in other large cities in the UK have di¤erent character-

isitc features with respect to the capital city. These �ndings are useful since while house price dynamics

at national and regional levels have been widely investigated, research at a more disaggregated level is

rare. Most available empirical works investigate house price nonlinear and cyclical behavior using data
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aggregated at national and regional levels. However, the housing market dynamics in world cities such as

London are a¤ected by local economic fundamentals and global factors. Strong demand pressure on the

housing market (often due to large migration in�ux) combined with inelastic housing supply in densely

built-up areas magnify exogeonus shocks and make these cities prone to housing market boubles (see

Hsieh and Moretti, 2019). Therefore, simply assuming that the time series properties of house prices at

national or regional level would also describe the features of the real estate markets in world cities is

counterfactual.

The remainder of this paper is organized as follows. In Section 2 some theoretical background in

relation to modelling housing market cycles is introduced. In Section 3 the modelling procedure is

discussed. In Section 4 the data are described and the empirical results are presented. In Section 5

the performance of the GSTAR model is investigated along with a number of other linear and nonlinear

models. In Section 6 the properties of the house price series for London are compared with those of other

large cities in the UK. Section 7 presents some policy implications and, �nally, Section 8 contains some

concluding remarks.

2 Modelling Asymmetric Cycles in Housing Markets

Detecting and modelling asymmetry constitutes an important issue in the study of housing market �uc-

tuations. As Sichel (1993) points out, a cycle is asymmetric if it has a phase di¤erent from the mirror

image of the opposite phase. A �rst type of asymmetry occurs when the average duration and dynamics

of the expansion and contraction phases di¤er. For example the expansion period may last longer than

the contraction phase, which may be steeper. A second type of asymmetry refers to deepness; it occurs

when the troughs in the cycle are deeper than the peaks. Dynamic asymmetry occurs when these two

examples of asymmetry are combined.

Modelling asymmetry requires nonlinear time series models, because econometric models that work

under the assumption of symmetry and linearity, would clearly be misspeci�ed in the presence of asymme-

try and might lead to spurious inference (see for example Blatt, 1980). In the literature various nonlinear

models have been used to capture the characteristics of house price series (see, among others, Kim and

Bhattacharya, 2009; Crawford and Fratantoni, 2003; Balcilar et al., 2015). Most empirical works ac-

commodate the departure from linearity of house price series by using a transition or switching model

that captures the fact that the housing market behaves di¤erently according to the state of the economic

system. The state of the system is de�ned in terms of a function of a transition variable, which may be

observable or unobserved. Along with the latter, the way that the system moves from one state to another

(that is, the transition mechanism) needs to be speci�ed. The choices of the transition variable and the

transition mechanism have given rise to di¤erent approaches to modelling the feature under consideration

(Proietti, 1999). In the house price literature various nonlinear models have been used to capture the
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characteristics of the real estate cycle. For example, Kim and Bhattacharya (2009) use an exponential

smooth transition autoregressive model (ESTAR) to model nonlinearity in the regional hosing market in

the United States. Nonlinear models are also used in Crawford and Fratantoni (2003) to forecast house

price changes.

Regime-switching models such as the STAR allow the dynamics of house price growth rates to evolve

according to a smooth transition between regimes that depends on the signs and magnitude of past

realisation of house price growth rates (see Chan and Tong, 1986). The low speed of transitions be-

tween di¤erent regimes in house price growth found in empirical studies validates the choice of smooth

transition models. A possible shortcoming of these types of nonlinear model describing the features of

housing markets is that in the model speci�cation a symmetric transition function is used to capture

oscillations from the conditional mean of the changes in house price series. Although STAR-type models

e¢ciently describe nonlinearity in house price growth rates, the commonly used transition functions may

not be suitable for capturing dynamic asymmetries in real estate cycles. In a recent work Canepa et

al. (2019) argue that the type of logistic transition function adopted in STAR models may not be the

best speci�cation to capture asymmetric oscillations from the conditional mean of house price in global

cities. Modelling house price series for a number of global cities, the authors show that using a class of

models indexed by two shape parameters that in�uence the symmetry and heaviness of the tails of the

�tted transition equation is more suitable to �t the non-central regions of the probability function and

therefore better capture the asymmetries found in the housing market cycles. The model proposed by

Canepa et al. (2019) is potentially promising since the type of parametrisation of the logistic transition

function allows for the expansion and contraction phases to be modelled independently. Moreover, from

the methodological point of view, the simple parametrization of the logistic function used in the paper

ensures the smoothness of the transition function by construction without demanding additional e¤ort

to determining what concerns identi�cation and estimation, and it allows thus to model the two modes

in the process�density function. A possible shortcoming of the empirical work in Canepa et al. (2019)

is that the goodness of �t of the proposed GSTAR model is not evaluated against competing model

speci�cations. In this respect, more work should be done to investigate whether the model is able to

reproduce the characteristic features of the cycle.

3 The Econometric Model

This section describes the econometric model that is considered in our analysis. We refer readers to the

work of Canepa and Zanetti Chini (2016) for details on the dynamic asymmetric speci�cation, see also

Teräsvirta, Tjøstheim, and Granger (2010) for details on smooth transition models.

Let �yt be a realization of a the house price changes (i.e. �yt = yt � yt�1) observed at t = 1 � p;

1 � (p � 1); ::;�1; 0; 1; T � 1; T . Then, the univariate process fytg
T
t can be speci�ed using the following
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model

�yt = �0zt + �
0ztG(
; h(ck; st)) + �t; �t � I:I:D:(0; �2) (1)

G(
; h(ck; st)) =

 

1 + exp

(

�
KY

k=1

h (ck; st)

)!�1

: (2)

In Eq. (1)-(2) the vectors zt = (1;�yt�1; : : : ;�yt�p)
0, � = (�0; �1; : : : ; �p)

0, � = (�0; �1; : : : ; �p)
0 are

parameter vectors. The process f�tg
T
t in Eq. (1) is assumed to be a martingale di¤erence sequence

with respect to the history of the time series up to time t � 1, denoted as 
t�1 = [�y1�(p�a);�yt�p],

with E[�tj
t�1] = 0 and E[�
2
t j
t�1] = �2. The expression G(~
; h(ck; st)) de�nes the transition function,

which is assumed to be continuously di¤erentiable with respect to the scale parameters ~
 2 (
1; 
2)

and bounded between 0 and 1. Also, G(~
; h(ck; st)) is continuous in the function h(ck; st) and h(ck; st)

is strictly increasing in the transition variable st: The transition variable st is assumed to be a lagged

endogenous variable, that is, st = yt�d for a certain integer d > 0. The parameters ck 2 f1; 2g are the

location parameters. De�ning �t = (st � c) in Eq. (2) we have

h(�t) =

8
<

:


�11 exp (
1 j�tj � 1) if 
1 > 0
0 if 
1 = 0

�11 log (1� 
1 j�tj) if 
1 < 0

9
=

;
; (3)

for �t � 0 (� > 1=2) and

h(�t) =

8
<

:


�12 exp (
2 j�tj � 1) if 
2 > 0
0 if 
2 = 0

�12 log (1� 
2 j�tj) if 
2 < 0

9
=

;
; (4)

for �t < 0 (� < 1=2).

Asymmetric behavior in house price dynamics is introduced in the model by Eq. (3)-(4). In particular,

Eq. (3) models the higher tail of the probability function, whereas Eq. (4) models the lower tail of the

probability function. The speed of the transition between the expansion and contraction regimes in the

housing markets is controlled by the slope parameters ~
: If the vector ~
 > 0; the function h(�k;t) is an

exponential rescaling which increases more quickly than a standard logistic function. On the other hand,

if ~
 < 0, the function h(�k;t) is a logarithmic rescaling which increases more slowly than a standard

logistic function.

Di¤erent choices of the transition function G(~
; h(ck; st)) give rise to di¤erent types of regime-

switching behaviour. If k = 1 in Eq. (2) the parameters on the right hand side of Eq. (1) change

monotonically as a function of st from � to �+ � and the corresponding transition function is given by

G
�
~
; h

�
�1;t
��
=

�
1 + exp

�
�h
�
�1;t
�
I(


1
�0;


2
�0) + h

�
�1;t
�
I(


1
�0;


2
>0)

+h
�
�1;t
�
I(


1
>0;


2
�0) + h

�
�1;t
�
I(


1
>0;


2
>0)

���1
(5)

with h(�1;t) given in Eq. (3)-(4) and I (�) is an indicator function.
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The GSTAR nests several well known linear and non-linear models. For example, the model in

Eq. (1) with 
1 = 
2 = 
 in the transition function in Eq. (3)-(4) implies that the GSTAR model

reduces to a one-parameter symmetric logistic STAR model (LSTAR) (see Teräsvirta at al., 2005, and

Teräsvirta,1994):

�yt = �0zt + �
0ztG(
; c; st)) + �t; �t � I:I:D:(0; �2) (6)

where the parameters � and � are previously de�ned and the transiton variable st given by

G(
; c; st) = [1 + exp f�
 (st � c)g]
�1

Also, the GSTAR reduces to the model in Tong (1983) when ~
 ! +1 and it becomes a straight line

around 1/2 for each st when ~
 ! �1. Finally, if ~
 is a null vector the GSTAR model reduces to

�yt = �0 +

pX

i=1

�izt�i + �t: (7)

Estimating the GSTAR model involves concentrating the sum of square residuals function with respect

to the vectors � and �, that is minimizing:

SSR =
TX

t=1

(�yt �  ̂
0
x0t)

where

 ̂ = [�̂; �̂] =

 
TX

t=1

x0t(~
; c)xt(
; c)

!�1 
TX

t=1

x0t(~
; c)�yt

!

;

and

xt(
̂; ĉ) = [ztz
0
tG (
̂; h (ĉ; st))] :

Note that under the assumption that the vectors ~
 and c are known and �xed, the GSTAR model is

linear in the vectors � and �. Therefore, the nonlinear least square minimization problem reduces to a

minimization on three (or four) parameters and can be solved via a grid search over 
1, 
2 and c. In our

application, both 
1 and 
2 are chosen between a minimum value of -10 and a maximum of 10 with an

increase rate of 0.5; whereas the grid for the parameter c is the set the values computed for the range of

the 10th and 90th percentile of st with the increase rate computed as the di¤erence of the two percentiles

at the boundary divided by an arbitrarily high integer.

Before the estimated GSTAR model can be accepted as adequate, it should be subjected to misspe�-

cation tests. Some important hypotheses which should be tested are the hypothesis that there is no

residual correlation, no remaining nonlinearity and parameter constancy (see Canepa and Zanetti Chini,

2016 for more details).
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4 Data and Estimation Results

The data under consideration are related to monthly nominal residential property prices over the period

1996:1 to 2019:9 in London. Speci�cally, the property price indexes published by Bloomberg are employed.

In order to investigate whether the real estate market in central London has di¤erent characteristic

features from those of other neighbourhoods, we consider the property market in the central and peripheral

areas separately. The London region is composed of the Greater London Authority, which includes Inner

London and Outer London. Inner London is related to the Boroughs which form the interior part of

Greater London, where average property prices are historically the highest in the capital, whereas Outer

London relates to the group of Boroughs that form a ring around Inner London. According to the London

Government Act in 1963, Outer London contains twenty Boroughs.

To investigate the housing market dynamics in di¤erent parts of the capital city we rank the twelve

Boroughs of Inner London in three groups according to their average prices in the period under consider-

ation (see Appendix for the group classi�cation). Following the classi�cation of most valuation surveyors

and estate agents we label these groups "super prime market", "prime market tier one" and "prime

market tier two", i.e. the ranking from areas with the most valuable properties to those that are less ex-

pensive. The outer London property market is more heterogeneous than Inner London�s, since it includes

a minority of Boroughs with average prices close to the super prime market group, but most Boroughs

feature lower average prices with respect to Inner London over the period under consideration.
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Figure 1: a)-f) plot the density functions of the di¤erent series against a Normal distribution. Note that s denotes the

standard deviation of the Normal.

Figures 1a)-f) plot the Kernel density function of the log house price series by urban area against a

normal distribution. Looking at Figure 1, clearly, the unconditional distributions of house price series are

not normal. Overall, the estimated densities look rather a convex combination of Normal distributions

with a shape that suggests two separate modes: the upper part of the distribution embodying most of the

observations, and another lower part covering the lowest values of the series. Such an observation indicates

that a nonlinear speci�cation may be useful for modelling these series. However, the distributions of the

Inner and Outer London prices series are quite di¤erent. This is particularly the case for the housing

market in the "super prime" and "prime tier one" urban areas where negative skewness suggests deep

cycles with the amplitude of the troughs exceeding that of the picks. Deepness of contractions also seems

to be a characteristic feature of the housing market cycles in Outer London. However, the steepness of

the cycles for real estate located in these Boroughs also appears to be an important feature since the

series appear more right-skewed with respect to the Inner London neighbourhoods. This preliminary

investigation, then, seems to suggest that expansions last longer than the contraction phases in Outer

London. It is interesting to note that the housing market cycles in the "prime tier two" urban areas look

more similar to those in Outer London than the cycles of the former urban areas located at the top end

of the market.

4.1 Estimation Results

The modelling procedure described in Section 3 involves determining the dynamic structure of the series

of house price growth in the �rst place. In our case, for each house price series the maximal lag order of

the AR(p) model has been chosen by using the Bayesian information criterion and the Portmanteau test

for serial correlation.

In Table 1 the estimated parameters and the relative standard errors are reported. In particular, the

second column reports the estimated parameters for the series of the aggregated house price index in

London, columns three to �ve report the estimated parameters for the "prime markets" and column six

and seven report the estimated parameters for the Boroughs in Inner and Outer London .

From Table 1 it appears that house price changes are persistent since most of the estimated au-

toregressive coe¢cients, �i and �i (for i = 1; :::; 4), are signi�cantly di¤erent from zero. This result is

consistent with the �ndings in Capozza et al. (2004) and Dusansky and Koc (2007) where evidence of

backward-looking expectations in the housing market is found.

The estimated parameters 
1 and 
2 give an indication of the speed of the transition between expansion

and contraction regimes, as well as the size of the cyclical peaks and troughs in the house price series for
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the period under consideration. Note that, these estimted coe¢cients are also signi�cantly di¤erent from

zero for all urban areas. With regard to the signs of these coe¢cients it is observed that the parameter


1 are all negative, whereas 
2 are all positive. This indicates that the speed of the transition from one

regime to the other regime increases in periods of house price contraction at a rate greater than one which

would be consistent with a standard logistic curve, but increases in the periods of house price expansion

at a rate which is slower than one which would be consistent with a standard logistic function. With

respect to the magnitude of the estimated 
1 and 
2 it appears that the estimated parameters for 
1 are

greater than 
2 in modulus for all the series under consideration. This implies that, whatever the urban

area, house prices in London feature a strong deep and mildly steep cycle: the house price stochastic

processes undergo contraction at an accelerating pace until a given minimum, after which they start to

recover with quickly decreasing acceleration until they smoothly returns to the peak, corresponding to

negative skewness in the levels of the house price series.

It is interesting to note that the magnitude of the estimated parameters 
1 and 
2 are di¤erent in

modulus for di¤erent urban areas within Inner London. In particular, the magnitude of the estimated

parameters decreases as we move from the top-end market of the Super Prime to the Tier Two urban

areas. This implies that the speed of transition between expansion and contraction phases is much faster

for real estate located in the up-market Boroughs. At the same time, cycles are deeper in the Super Prime

neighbourhoods than in Tier Two, with Tier One in between. Looking at the estimated parameters for

Inner and Outer London, it appears that cycles in Inner London are, overall, deeper but shorter than

in Outer London. In particular, in both urban areas house prices in expansion periods deviate from

their mean at a logarithmic rate, whereas in contraction phases they return to the equilibrium level at a

exponential rate. However, the magnitude of the estimated parameters also in this case indicates that the

speed of transition between the expansion and contraction phases is much greater for real estate located

in Inner London than Outer London. These results are certainly in line with the theoretical model in

Gleaser et al. (2008) (see also Saiz, 2010), where a positive correlation is postulated between population

density and supply elasticity so that in high density urban areas a positive demand shock would push

prices up, but would have a relatively small e¤ect on the housing supply. However, the magnitude of the

estimated parameters may also support the results described in Badarinza and Ramadora (2018): that

the top end of the London housing market is a¤ected by international investment �ows that leave the

market more prone to global shocks.

Note that the relatively small estimates of 
1 and 
2 indicate that other types of nonlinear models

in the class of regime switching, such as the Markov switching or the TAR models, are not suitable for

capturing the housing market dynamics since these models assume that 
1 = 
2 �! 1, thus implying

a sudden transition between one regime and the next, by assumption. Coming now to the parameter c,

this indicates the halfway point between the expansion and contraction phases of the housing markets.

In Table 1 the estimated parameter c is statistically signi�cant at the 5% level.
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Once the model has been estimated, we evaluate the goodness of �t of the model using the mis-

speci�cation tests suggested in Canepa and Zanetti Chini (2016). In particular, the diagnostic statistics

considered are: i) the LM test for the hypothesis that there is no serial correlation against the fourth

order autoregression (for q = 4), ii) the LM test for the hypothesis that there is no remaining asymmetry,

iii) the LM test for parameter constancy. The p-values of the tests are reported in the bottom panel of

Table 1. Looking at the results of the misspeci�cation tests it emerges that the test statistic does not

reject the null hypothesis of no autocorrelation against q-order autoregression for all estimated models.

There is also no evidence of remaining asymmetry since the LM test does not reject the null hypothesis

for all the estimated models. Similarly, the LM test for parameter constancy does not reject the null

hypothesis at the 5% signi�cant level for all the estimated models. Overall, the results in Table 1 suggest

that the estimated models do not su¤er from misspeci�cation problems.

Table 1. Estimation results for house price series in London.

London Super Prime Tier 1 Tier 2 Inner London Outer London

Estimated Parameters

�0 0:666�
(0:062)

1:091�
(0:073)

0:235�
(0:021)

0:467�
(0:080)

0:435�
(0:025)

0:106�
(0:012)

�1 1:799�
(0:047)

1:320�
(0:028)

1:383�
(0:013)

�1:053�
(0:040)

1:574�
(0:023)

1:766�
(0:022)

�2 �0:856�
(0:079)

0:171�
(0:039)

�0:031
(0:021)

2:585�
(0:096)

�0:330�
(0:039)

�0:500�
(0:044)

�3 0:242�
(0:063)

�0:785�
(0:039)

�0:548�
(0:021)

�2:510�
(0:094)

�0:223�
(0:041)

�0:448�
(0:046)

�4 �0:192�
(0:038)

0:357�
(0:026)

0:168�
(0:013)

1:088�
(0:041)

�0:154�
(0:025)

0:150�
(0:023)

�0 �0:434�
(�:130)

�1:459�
(0:128)

�0:085�
(0:035)

0:467�
(0:111)

�0:353��
(0:161)

0:215�
(0:066)

�1 �1:146�
(0:090)

�0:350�
(0:076)

0:026
(0:065)

�1:053�
(0:035)

�0:400�
(0:107)

�0:034
(0:035)

�2 1:746�
(0:134)

�0:216�
(0:040)

0:484�
(0:037)

2:585�
(0:101)

�0:862�
(0:093)

0:229�
(0:075)

�3 �0:585�
(0:091)

0:428�
(0:051)

�0:862�
(0:065)

�2:510�
(0:099)

�0:923�
(0:314)

�0:454�
(0:088)

�4 �0:058
(0:057)

�0:019
(0:048)

0:349�
(0:026)

1:018�
(0:045)

0:473�
(0:051)

0:266�
(0:047)


1 �2:950
(0:191)

� �7:400�
(0:276)

�5:400�
(0:499)

�0:950
(0:166)

� �6:900
(0:258)

� �1:650
(0:257)

�


2 1:204
(0:109)

� 1:543�
(0:291)

1:012�
(0:545)

0:300
(0:139)

� 2:451
(0:265)

� 0:592
(0:099)

�

c 2:156
(0:094)

� 4:422�
(0:178)

1:018�
(0:545)

0:307�
(0:025)

5:582�
(0:110)

5:376�
(0:026)

Diagnostic Tests (p-values)

LM test for no Corr. 0.255 0.278 0.479 0.670 0.198 0.120
LM Test for no Rem. Asy. 0.556 0.358 0.706 0.903 0.862 0.775
LM Test for Par. Const. 0.346 0.382 0.414 0.385 0.373 0.350

The top part of the table reports the estimated parameters for the GSTAR model and p-values for the misspeci�cation

tests are given in the bottom panel. The diagnostic statistics are: i) the LM tests for the hypothesis that there is no serial
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correlation against the q-order autoregression, ii) the LM test for the hypothesis that there is no remaining asymmetry,

iii) the LM test for parameter constancy. Note: * and ** indicate signi�cance level at 5% and 10%, respectively

5 Dissecting London�s Housing Market Cycle

In the previous section we presented the estimation results of the GSTAR model. In this section we

evaluate the properties of the model by investigating: i) whether the GSTAR model is able to replicate

important features of the housing market cycle, and ii) the forecasting properties of the model.

In order to evaluate the model a useful exercise is to see what are the cycle properties the model

is able to replicate when compared to the real data. This involves in the �rst place investigating the

features of the cycle using real data to simulate the �tted model, and then comparing the outcomes to

what was found when the same exercise was carried out with the actual data. Moreover, it may be of

interest to compare the GSTAR to other models. We are particularly interested in investigating whether

linear models can replicate the features of the housing market cycles. The investigation may be useful

for highlighting the strengths and weaknesses of alternative modelling procedures.5

5.1 Identifying House Price Cycles

In order to identify house price cycles we borrow from the business cycle literature and use the Pagan

and Sossounov (2003) algorithm to detect the turning points in the housing market cycle. With respect

to other well-known procedures used in the literature to identify the cycle turning points (see for example

Bry and Boscham, 1971), the main advantage of the Pagan and Sossounov (2003) algorithm is that the

data do not need to be smoothed before detecting the turning points and thus the outliers in the series do

not need to be removed. This feature of the algorithm is particularly important for the data in question.

The procedure consists in �nding a series of local maxima and minima that allow the series to be

segmented into periods of house price expansion or contraction. The algorithm is basically a pattern-

recognition program that involves �nding points which are higher or lower than the window of surrounding

points. Then the duration between these points is measured and a set of censoring rules is adopted which

restricts the minimal lengths of any phase, as well as those of complete cycles. In particular, using a

window of j months, a local maximum yt is de�ned as an observation of the series such that time t is a

local peak if

P = (yt � yt�8 > 0; :::; yt � yt�1 > 0; yt � yt+1 > 0; :::; yt � yt+8 > 0) :

with the inequality reversed for troughs.

5Note that below we report only the results relating to the aggregated data of the house price series in London. The
analysis for the Boroughs reveals similar results. For this reason, the output is not reported, but available from the authors
on request.
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The probability of event P depends upon the joint distribution of f� ln yt+kg
8
k=�8, therefore in order

to calculate the probability of P the speci�cation of the data generating process (DGP) for � ln yt is

required. The algorithm ensures that peaks and troughs alternate, so that a peak is immediately followed

by a trough, and vice versa. In addition, a set of censoring rules is adopted to restrict the minimal length

of any phase as well as those of complete cycles. In this paper we follow the business cycle literature (see

for example Harding and Pagan, 2002) and impose a censoring rule in the algorithm so that the house

price cycles in each phase must last at least 6 months and complete cycles must last at lesat 15 months.

Once the turning points have been identi�ed, the features of the housing market cycles can be investi-

gated. We are particularly interested in the duration and amplitude of the cycles. In general, amplitude

measures the cumulative increase (decrease) of house prices in an upturn (downturn). Duration gives an

indication of the persistence of house prices; this is de�ned as the distance in months between a trough

and a peak for expansion, whereas in case of downturns it is measured as the distance in months between

a peak and a trough. The amplitude is a measure of the magnitude of the shock; it is computed as the

size of the change in house prices switching from peak to trough for contraction phases and from trough

to peak for expansion phases.

For ease of interpretation, following Harding and Pagan (2002), we can approximate each house price

phase as a triangle where the height is the magnitude of expansion (contraction), the base is the persistence

(duration) and the hypotenuse gives the path of the series for the hypothetical case of linear transition

between two successive turning points. Other features of the phase can be measured by departure from

the area being a triangle. In this respect, we refer to measures of the impact of a phase on the housing

market as "cumulation" and "excess" measures. More precisely, cumulation is approximated by the total

accumulated loss in terms of price growth as the cycle moves from peak to trough for contraction phases

and vice versa for expansions. Excess, for its part is a measure which captures the deviations of house

price in an expansion (contraction) phase from a triangle approximation.

Table 2. Dating of peaks (troughs) in house price cycles.

Expansion Contraction

Duration 15.85 5.07

Amplitude 0.10 -0.20

Cumulation 1.86 -0.29

Excess 0.03 -0.09

Note: The table reports the average duration in months; the average amplitude in %; the excess from a triangle

approximation.

Table 2 reports the average amplitude, duration, cumulation and excess for the data under consider-

ation. The stylized facts of cycle behaviour can be summarized as follows. First, expansion phases tend

to be signi�cantly longer than contraction phases. Conversely, the amplitudes of contraction phases tend
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to be greater than those of expansion phases. Cumulated movements and excess cumulated movements

are indicative of the shape of the cycle. The results in Table 2 imply that cumulated price increases in

expansion phases are greater than those in contraction phases, probably because expansion phases on

average last longer than contraction phases. Similarly, the value of the excess measures seems to point to

the fact that the deviation of the contractions from a triangle approximation is greater than the deviation

of the expansions.

5.2 Monte Carlo Simulation Experiment

Having established the characteristic features of the house price cycle, we now evaluate the GSTAR and

other linear and nonlinear models along two di¤erent dimensions, focusing �rst on whether they are able

to reproduce the characteristic features of the cycle described in Table 2, and then we compare these

models on their ability of forecasting house prices.

The simplest data generating process (DGP) that we consider is a martingale process (RW) with

mean and variance taken from house price growth. Note that a pure martingale process would produce

a symmetric cycle, with contractions and expansions not signi�cantly di¤erent in either phasesof the

cycle. Therefore, a martingale process would �t the hypothesis that housing markets are e¢cient. In

the literature this hypothesis is controversial, as important theoretical works suggest that real estates

are not e¢cient markets. This literature argues that the presence of high information costs, infrequent

transactions, and the fact that houses are heterogenous products contribute to the ine¢ciency of housing

markets (see for example Case and Shiller, 1989). However, another strand of the literature contends that

housing markets in large cities that feature a high volume of transactions have lower information costs

per unit area than properties located in lower density urban areas have. For example, Gupta and Miller

(2009) show that home prices are predictable for large metropolitan areas. Due to the relatively high

transaction volume we may expect that global cities have lower information costs and a more e¢cient

market with respect to other metropolises that do not enjoy the same status. It is therefore of interest to

see to what extend a DGP drown from a martingale process is able to replicate the features of the house

price series for the data at hand.

House price series are well known to have serial correlation (see Abraham and Hendershott, 1993;

Capozza and Seguin 1996; Malpezzi, 1999; Meen, 2002). In the literature the persistence in the housing

market is usually referred to as the "momentum e¤ect". Case and Shiller (1989) were the �rst to document

momentum and predictability in housing returns. In a related study Abraham and Hendershott (1993)

illustrate that persistence explain the returns in housing markets in volatile coastal cities in the United

States relative to the inland cities. As Capozza et al. (2004) point out in densely populated areas high

construction costs and tight regulations increase the cost of new housing and reduce the ability of builders

to respond quickly to demand shocks, causing persistence in the housing market. Accordingly, the next

model we consider is the AR(p) model in Eq. (7) which is nested in the GSTAR.
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Momentum in housing market is positively correlated to volatility (see for example Hung and Glascock,

2010). To introduce heteroskedasticity in the DGP one could adopt a generating process that produces

realizations of �yt from a non-normal density. In this respect, one possibility is to change the density for

"t in Eq. (7) to some other density with fatter tails. However, it is more interesting to generate the excess

kurtosis endogenously by using a GARCH-type model. In our case, a few trials in the estimation procedure

revealed that the most suitable model for the data in hand was an AR-GARCH (1,1). Accordingly, the

AR-GARCH(1,1) model was considered. In Crawfold and Fratantoni (2003) a similar model was found

to �t large cities well. Finally, Alqaralleh and Canepa (2020) found that the model in Eq. (6) well

captured asymmetries in the housing market cycle (see also Kim and Bhattacharya, 2007). Accordingly,

the LSTAR model was also considered.

To compare di¤erent results we carried out a Monte Carlo experiment simulating the growth series

from each of the estimated models in order to obtain the empirical density functions for each of the eight

characteristics of the cycle. Details of the DGPs are given in the Appendix. We then compared these

densities with the relevant characteristics in the original data and calculated the upper 5% and the lower

95% tails of the simulated density. Then, if the calculated p-value of the simulated density was greater

than 10%, we concluded that the parametric model under consideration was unlikely to produce data

with the cycle features observed in the real data.

The simulation results are reported in Table 3. For ease of interpretation the results relating to the

cycle characteristic reported in Table 2 are replicated in the �rst row of Table 3. An asterisk next to the

cycle measure indicates that the observed characteristic is outside the 90% simulated band.

Table 3. Characteristics of expansion and contraction phases for simulated data.

Model Duration Amplitude Cumulation Excess

Contr. Expan. Contr. Expan. Contr. Expan. Contr. Expan.

Data 5.07 15.85 -0.20 0.10 -1.86 0.29 0.03 -0.09

RW 7.33 10.66 -0.07 0.04 -0.45 0.06 0.002 -0.004

AR (p) 5.57� 16.14� -0.13 0.09� -0.95 0.05 0.004 -0.001

AR-GARCH(1; 1) 10.21 20.42 -0.22 0.31 -2.53� 0.97 0.006 -0.001

LSTAR 5.86� 16.42� -0.05 0.09� -1.08 0.20 0.003 -0.01

GSTAR 5.91� 15.20� -0.22� 0.08� -1.30 0.33� 0.02� -0.03

Note the table reports: average duration in months, amplitude in %, cumulation and excess from a triangle approxi-

mation. The Table includes the 5% and 95% values of the simulated distributions of all four measures. A *) indicates that

the empirical value for the London house price series data is contained in the 90% simulated con�dence interval.
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Looking at the results from Table 3 it appears that the random walk model cannot reproduce cycles

with peak-to-trough amplitude and cumulation similar to the actual data. Introducing the correlation in

the AR(p) DGP certainly improved the �t. On the other side, modelling the conditional volatility using

the AR-GARCH(1,1) seemed to go too far, producing cycles that were too extreme, particularly in relation

to the duration and amplitude of the cycle, and did little to shape the other measures accurately. Given

that these models were preferred to the random walk models, such an outcome was a little unexpected, but

it does serve to show that adding nonlinear structure to the conditional moments has a powerful though

sometimes undesirable e¤ect upon cycle characteristics. Looking now at the data simulated from the

LSTAR data generating process, it appears that the model captures duration well, but is not particularly

good at replicating the other measures. These results are in line with the argument in Zanetti Chini

(2018): that the logistic STAR model may be able to reproduce the steepness but not the deepness of the

cycle, whereas the fact that the GSTAR model has two parameters that govern the tails of the logistic

sigmoid distribution separately implies that the model outperforms its symmetric counterpart when it

comes to getting the shape of the cycle right. Overall, from Table 3 it is clear that accounting for the

nonlinearity observed in the data may create some extra movement with respect to the AR(p) model

which is useful for replicating certain elements of the business cycle.

5.3 Forecasting House Prices

A rolling forecast experiment was implemented in order to compare the forecasting ability of the GSTAR

with the other models considered in the previous section. With this target in mind the house price

series was split onto two subsamples: a pre-forecast period (for t = 1; :::; Ts�1) from which the model

was estimated and a forecast period t = T s; : : : ; T with T s = t + h. Then h-step-ahead forecasts were

computed and compared with the pre-forecast period. The forecast period under consideration was

h = f1; 3; 6; 12g.

Our analysis expands beyond the traditional point forecasts to include density forecasts. Recent

studies report that nonlinear models produce superior interval and density forecasts with respect to linear

models, although inferior point forecasts (see, for example, Rapach and Wohar, 2006). It is therefore of

interest to see how the models considered in this paper compare in their predictive accuracy. Note that

the RW is not considered below because the performance of the model was found in the previous section

to be quite poor and therefore it could not be expected to perform well in the out-of-sample forecast

exercise.

a) Point Forecasts Measures

We compare a linear AR(p), the LSTAR and the AR-GARCH (1,1) with the GSTAR model in their

out-of-sample point forecasts. The out-of-sample forecast comparisons do not rely on a single criterion,
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for robustness we compare the results of four di¤erent measures. Namely, the mean forecast error (MFE),

the root mean square forecast error (RMSFE), the symmetric mean absolute percentage error (sMAPE)

and the median relative absolute error (mRAE). The four performance measures are calculated as follows:

MFEh =
1

T � h� T s + 1

T�hX

t=T s

�
�yt+h ��ŷt+hjt

�
;

sMAPEh =
100j�yt+h ��ŷt+hj

0:5(�yt+h ��ŷ
j

t+hjt)
;

mRAEh =
j�yt+h ��ŷt+hj

j�yt+h ��ŷ
(1)
t+hj

; with (1) indexing the benchmark model;

RMSFEh =
1

T � h� T s + 1

T�hX

t=T s

�
�yt+h ��ŷt+hjt

�2
:

b) Density Forecast Measures

The literature on the aggregation of density forecasts focuses on the so-called scoring rules (see, for

example, Geweke and Amisano, 2011). These are functions that enable the forecaster to aggregate the set

of conditional predictive densities. As regards point forecasting, the out-of-sample forecast comparisons

based on four di¤erent scoring rules were used for aggregating the T � T s � h + 1 predictive densities

produced by the same forecasting exercise:

The logarithmic score (LogS):

LogSj;h =
1

T � h� T s + 1

T�hX

t=T s

log f j
t+hjt; (8)

which corresponds to a Kullback-Liebler distance from the true density; models with higher LogS are

preferred.

The quadratic score, somewhat the equivalent of the MSFE in point forecasting, is de�ned as:

QRSj;h =
1

T � h� T s + 1

T�hX

t=T s

KX

k=1

�
f j
t+hjt � dkt

�2
;

where dkt = 1if k = t and 0 otherwise; models with lower QSR are preferred.

The (aggregate) continuous-ranked probability score (CRPS), equivalent to the sMAPE, is de�ned as:

CRPSj;h =
1

T � h� T s + 1
�

T�hX

t=T s

����ft�h � f
j

t+hjt

���� 0:5
���ft�h � f

0

t+hjt

���
�
;

where f and f 0 are independent random draws from the predictive density and ft+hjt is the observed;

models with lower CRPS are preferred.
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Finally, the quantile score (qS), which can be obtained if f j
t+hjt is replaced with a predictive �-level

quantile q�
t+hjt in Eq. (8) (and the logarithmic function is removed); this score is used in risk analysis

because it provides information about deviations from the true tail of the distribution.

Table 4 reports the results of the h-step-ahead forecasts for the forecast period h = f1; 3; 6; 12g. In

Panel A the point forecast measures are reported, whereas the density forecast performance measures

are reported in Panel B. In columns 1 and 2 the forecasting horizon and the forecast error measures are

respectively reported, whereas in columns 3-6 the forecasting results for each model are reported. From

panel A of Table 4 it is clear that, according to the point performance measures, the GSTAR model

performs better than its linear and nonlinear counterparts, especially in the medium-term and long-term

horizons. However, the results for the logarithmic score are mixed with the AR-GARCH(1,1) occasionally

outperforming the GSTAR in the long-term horizon.
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Table 4. Forecasting house prices: point and density predictive performances.

Forecast Horizon Forecast Error Measure AR(p) LSTAR GSTAR AR GARCH(1,1)

PANEL A: Point Forecasts

1 MFE 0.009 0.006 0.002 0.005

3 0.012 0.011 0.004 0.008

6 0.014 0.013 0.009 0.009

12 0.016 0.019 0.012 0.011

1 sMAE 0.008 0.009 0.004 0.005

3 0.012 0.010 0.006 0.006

6 0.011 0.011 0.009 0.008

12 0.015 0.012 0.012 0.010

1 mRAE 1.000 1.008 0.995 0.994

3 1.000 1.012 1.003 1.004

6 1.000 1.013 1.005 1.005

12 1.000 1.023 1.007 1.007

1 RMSPE 0.004 0.003 0.003 0.003

3 0.005 0.004 0.004 0.005

6 0.008 0.005 0.005 0.006

12 0.009 0.007 0.006 0.007

PANEL B:Density Forecast

1 LogS 0.000 0.001 0.001 0.000

3 0.001 0.001 0.001 0.001

6 0.001 0.001 0.002 0.001

12 0.002 0.002 0.002 0.002

1 QRS 0.003 0.002 0.002 0.003

3 0.003 0.003 0.003 0.004

6 0.004 0.003 0.003 0.004

12 0.004 0.004 0.004 0.005

1 CRPS 2.051 1.992 1.877 1.984

3 2.189 2.078 1.922 1.994

6 2.452 2.219 2.004 2.000

12 2.557 2.267 2.015 2.002

1 qS 0.021 0.022 0.021 0.022

3 0.025 0.026 0.025 0.024

6 0.037 0.029 0.034 0.029

12 0.039 0.037 0.034 0.034

The table compares RW, AR(p), LSTAR, AR-GARCH(1,1) models and the GSTAR model in their out-of-sample

forecasts. In Panel A the point forecast measures are i) the mean forecast error (MFE); ii) the root mean square forecast

error (RMSFE); iii) the symmetric mean absolute percentage error (sMAPE); and iv) the median relative absolute error

(mRAE). In Panel B the density forecast measures are: i) the logarithmic score (LogS) SR); iii) the continuous-ranked

probability score (CRPS); and iv) the quantile score (qS). The forecast horizon is 1,3,6 and 12 quarters.

20



Table 4 reports the results of the h-step-ahead forecasts for the forecast period h = f1; 3; 6; 12g. In

Panel A the point forecast measures are reported, whereas the density forecast performance measures

are reported in Panel B. In columns 1 and 2 the forecasting horizon and the forecast error measures are

respectively reported, whereas in columns 3-6 the forecasting results for each module are reported. From

panel A of Table 4 it is clear that, according to the point performance measures, the GSTAR model

performs better than its linear and nonlinear counterparts, especially in the medium-term and long-term

horizons. However, the results for the logarithmic score are mixed with the AR-GARCH(1,1) occasionally

outperforming the GSTAR in the long-term horizons.

6 Is London Di¤erent from Other Cities?

In Section 4, the GSTAR model detected widespread evidence of asymmetric adjustment in London.

Moreover, the GSTAR model revealed that, when compared to the Boroughs located in Outer London,

the urban areas in Inner London feature a stronger asymmetrical cyclical component with higher upturns

and deeper downturns. This result is in agreement with economic theory, where it is suggested that

in large metropolitan areas the inertia of supply resulting from construction lags in combination with

backward-looking expectations generates more extreme asymmetric cycles (see for example Capozza et

al., 2004; Glaeser and Gyourko, 2018; Case and Shiller, 1989). In an in�uential paper, Gyourko et al.

(2013) provide evidence that house prices and income growth are related. The authors give the name

�superstar cities� to those metropolitan areas where: i) demand exceeds supply and ii) supply growth is

limited. A crucial characteristic for a city to qualify as a superstar is that residents are willing to pay a

premium to live there and the proportion of high-income households is relatively high. In places that are

desirable, but have low construction rates, households with high incomes or strong preferences for this

location outbid lower income families for scarce housing and drive up the price of the underlying land. By

contrast, in locations where the housing supply is not constrained, households can buy at construction

costs so that instead of growth in house prices, the areas exhibit growth in house supply. According to

the theoretical framework suggested by Gyourko et al. (2013), the clearing process continues as long as

the growth in the income-weighted demand for a location exceeds the addition in supply, either in the

original location or in a close substitute. In addition to attracting highly skilled workers, global cities

also attract in�ows of foreign capital due to the increasing �nancial market liberalisation that the world

has witnessed in recent years. According to Favilukis et al. (2013) (see also Badarinza and Ramadorai,

2018) many countries that saw large housing booms and busts attracted foreign capital and much of this

capital was invested in the property market, thanks to mortgage credit extension.

Against this background, one question that naturally arises is: How far do the house price dynamics

in London re�ect the developments of other large cities in the UK? In other words, do housing markets

in other large cities in the UK show similar asymmetric cyclical features?
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In order to answer these questions we consider a number of large cities in UK and test whether the

housing markets in these large metropolitan areas show characteristic features similar to those observed

in London. With this target in mind we consider testing for nonlinearity and the dynamic asymmetry

of the house price series in other large cities in the UK. To test for nonlinearity the inference procedure

similar to the one suggested in Luukkonen, Saikkonen, and Teräsvirta (1988) has been used. The test

statistic has under the null hypothesis H0 : ~
 = 0 against H1 : ~
 6= 0 in Eq. (5). Therefore, if the null

hypothesis is not rejected the nonlinear function G(�) is zero in Eq. (5) : Under the null the LM-type

test is asymptotically distributed as a �2(3p) distribution. To assess whether the GSTAR model is an

admissible speci�cation with respect to the housing market cycle characteristics in these cities we also

consider testing for dynamic symmetry. If the data are compatible with the GSTAR model, we saw in

the previous section that, according to the results of the Monte Carlo experiment, the series generated

by the model are able to re�ect the characteristics of the housing market cycle.

To test for dynamic symmetry we follow Canepa and Zanetti Chini (2016) and specify the following

auxiliary regression

ût = ẑ01t
~�1 +

pX

j=1

�2j�yt�j�yt�d +

pX

j=1

�3j�yt�j�y
2
t�d +

pX

j=1

�4j�yt�j�y
3
t�d + vt ; (9)

where vt � I:I:D:(0; �2), ~�1 = (�10; �
0
1)
0, �10 = �0 � (c=4)�0, �1 = � � (c=4)� + (1=4)�0ed, ed =

(0; 0; : : : ; 0; 1; 0; : : : ; 0)0 with the d-th element equal to unit and T3(G) = f1G + f3G
3 is the third-order

Taylor expansion of G(�) at ~
 = 0, f1 = @G(�)=@�j
=0 and f3 = (1=6)@
3G(�)=@�j
=0, G(�) is given in

the Eq. (2). To test the null hypothesis

H0 : �2j = �3j = �4j = 0 (j = 1; : : : ; p): (10)

in Eq. (10) the following LM statistic can be used

LM = (SSR0 � SSR)=�̂v
2 ; (11)

where SSR0 and SSR denote the sum of the squared estimated residuals from the estimated auxiliary

regression Eq. (9) and under the null and the alternative, respectively, and �2v = (1=T )SSR: Under the

null hypothesis the LM test in Eq. (11) is asymptotically distributed as a �2p distribution.

Table 5 reports the two test statistics for the ten largest cities in the UK, apart from the capital. The

cities are ordered according to their population with the largest cities at the top. The top panel in Table

5 reports the p-values for the calculated test of nonlinearity and dynamic symmetry for London, whereas

the p-values for the other cities are reported in the lower part of the table.
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Table 5. Linearity and dynamic symmety tests for cities in the UK.

City Nonlinearity test Dynamic Symmetry

p-value p-value

London

London 0.035 0.012

Outer London 0.040 0.001

Inner London 0.041 0.050

Other Major Cities

Birmingham 0.064 0.280

Manchester 0.381 0.665

Glasgow 0.002 0.114

Newcastle 0.005 0.613

Liverpool 0.873 0.672

Leeds 0.043 0.643

Bristol 0.338 0.995

Belfast 0.077 0.835

Nottingham 0.068 0.373

Edinburgh 0.034 0.575

Note: The linearity test has under the null hypothesis that the house price series are linear. For the dynamic symmetry

test the null hypothesis is dynamic symmetry and the alternative hypothesis is asymmetry. In column 1 the cities, ranked

by population, are reported, whereas the tests p-values are reported in columns 2-3.

Looking at the results in Table 5, it appears that the characteristic features of the house price series

for the largest metropolitan areas outside London are quite di¤erent from the capital city. Looking at

results the null hypothesis of linearity can be rejected for the city of London, but also for many of the

other large cities in the UK. On the other hand, the null hypothesis of dynamic symmetry is rejected

for London, but the same is not true for all the other cities. This suggests that the characteristic of

the housing markets of these cities could not be captured using a highly nonlinear speci�cation such as

the GSTAR model. Overall, the results in Table 5 suggest that the largest metropolitan areas outside

London have di¤erent house price dynamics from those in the capital city.

7 Discussion and Policy Recommendations

The estimation results in this paper reveal several insights into the patterns of the London housing

market. In particular, it is found that the expansion phases last longer than the contraction phases. This

implies that house prices build up slowly in good times, but markets bust quickly when the tide changes.

We also �nd that troughs are deeper than the peaks are tall, meaning that contractions in the housing

market are more pronounced than the expansions. Looking at the house price series for major cities in
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the UK outside the London, it is also clear that house price movements in London are more extreme than

in the rest of the country.

The fact that house prices in cities such as London feature asymmetric cycles has several policy

implications. First, house price �uctuations in the capital region often produce spill-over e¤ects to

neighbouring regions, causing price �uctuation not justi�ed by the fundamentals of these regions. In this

respect, there is an extensive literature on the interaction of regional house prices through the "ripple

e¤ect" and how they converge or diverge over time (see for example Holmes and Grimes, 2008; Cook,

2006). The "ripple e¤ect" or "price di¤usion e¤ect" is the phenomenon whereby a shock in a given housing

market spreads out over time to the rest of the territory. More precisely, the ripple e¤ect on house prices

is shown as a co-movement (rise or fall) in real estate prices which a¤ect prices in other regions in the

same direction. Spatial di¤usion can occur in contiguous geographical areas, but not necessarily; it may

also a¤ect discontinuous spatial territory with similar socio-economic conditions. Among other empirical

works, evidence of the price di¤usion e¤ect is given in Tsai (2018) for the US, Cook and Watson (2016)

for the UK, and Taltavull et al. (2017) for Spain.

Second, the recent �nancial crisis has made it clear that housing markets can undermine �nancial

stability. Historical evidence shows that a signi�cant number of banking crises were preceded by the

bursting of house price bubbles (Reinhart and Rogo¤, 2009). Falling property prices tend to put pressure

in the banking sector, not only because of the increases in mortgage default but also because of a

deterioration in the balance sheets of corporate borrowers who rely on real estate as collateral. The

consensus in the literature supports the view that asymmetries in housing market cycles are closely related

to the credit cycle. According to this literature the over-expansion of mortgage credit in the boom phases

increases leverage, building up credit risk. When the cycle turns, the impact on macroeconomic and

�nancial stability is greatest when falling house prices and high debt interact in a downward spiral (Borio

and Lowe, 2002; Dell�Ariccia, 2012).

Third, developments in �nancial markets can greatly amplify the e¤ect of small income shocks through

the economy. This is especially relevant to capital cities that are also global cities. In a seminal paper,

Bernanke et al. (1996) refer to this ampli�cation mechanism as the "�nancial accelerator" or "credit

multiplier". The key idea behind the �nancial accelerator is that, under the assumption of a �xed

leverage ratio, positive or negative shocks to income have a pro-cyclical e¤ect on the borrowing capacity

of households and �rms. In particular, when house prices fall households have a smaller deposit (i.e.

a lower loan to value ratio) available than they otherwise would for the purchase of their next home.

Therefore, homeowners are able to obtain less favourable mortgage interest rates when renegotiating

their mortgage, and have less scope for extracting additional equity to �nance consumption. A number

of studies provide evidence that �uctuations in the real estate market signi�cantly a¤ect the value of

houses as collateral and therefore strongly in�uence borrowing conditions for households. Claessens and

Kose (2018) show that the impact of cycles on �nancial stability are greater the greater the dynamic
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asymmetry: the greater the amplitude of the �uctuations due to larger wealth e¤ects: and the longer

their duration due to the fact that consumption and lending respond more strongly to persistent changes

in wealth. Using a similar argument, Kiyotaki and Moore (1997) show that rising asset prices may ignite

a lending boom by increasing the collateral values. A reversal in fundamentals further increases the loan

default rate (see also Favilukis et al., 2017).

The behaviour of real estate markets and interaction with the �nancial sector and real economy have

sparked a signi�cant amount of debate among policymakers and academics regarding the appropriate

policy response. Traditional tools to dampen cycles are central bank monetary policy measures targeted

at managing the interest rate. It is well known that housing markets respond well to monetary policy

actions, since changes to the cost of the user�s capital a¤ect the demand for residential investment (see

Bernanke et al. 1996; Erceg and Levin, 2006). However, monetary policy is not speci�cally targeted at

the housing market. On the contrary, it is a general tool that a¤ects all types of lending. Some authors

have argued that the surge in interest rate required to restrain house price growth may adversely a¤ect

other sectors of the economy and increase the likelihood of a recession (see Ume, 2018). In this respect,

macroprudential policy targeted at limiting the uncontrolled growth of housing market credit may be

more e¤ective in damping housing market cycles. The structural macroprudential measures that could

be implemented to moderate house price cycles are either borrower-based (DTI/loan-to-income/debt-

service-to-income ratios, amortisation) or collateral-based (LTV) instruments. These tools have proved

successful in curbing excessive house-price rises in global cities such as Hong Kong (see Gerlach and Peng,

2005 among others).

Evidence of more extreme cyclical patterns in the city of London than in other regions in the UK

suggests that in global cities regional tools could be used to dampen overly cyclical variation in house

prices. In this respect, Cerutti et al. (2017) suggest calculating indicators that can be used by policy-

makers to gauge the level of overvaluation of residential housing separately for large metropolitan areas

such as capital cities and for the rest of the country. This would make it possible to monitor promptly

any signi�cant developments in the property market and prevent the overheating of the market in ex-

pansion phases. In global cities the lower a¤ordability of real estate coupled with the slower growth

of household disposable income is an additional source of stronger cyclical patterns in property prices.

Greater �nancial vulnerability could lead households in these cities to be more vulnerable to economic

shocks, with implications for the �nancial stability if those households cannot repay their mortgages. In

this respect regional-level tools such as local tax could be used to dampen the stronger cyclical pattern

in these metropolises. Similarly, macroprudential policy measures could be regionally targeted.

Finally, it is clear that stronger cyclical patterns in large cities are partly related to structural factors.

A great many studies suggest that in large metropolitan areas high real construction costs introduce

unpriced supply restrictions (see for example Glaeser and Gyourko, 2018; Capozza et al., 2004). In this

respect, other policy measures useful for dampening the asymmetries in housing market cycles may be
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chosen to increasing the responsiveness of the housing supply to demand shocks. Clearly, increases in the

price would not occur if the housing supply was perfectly elastic. Severe supply constraints in large cities

stem from a range of sources such as the availability of land and construction costs. Other important

potential factors are regulatory constraints. A large volume of studies documents the likelihood that the

construction costs imposed by regulation will be substantial (see, for example, Quigley and Rosenthal,

2005; Zabel and Dalton, 2011; Jackson, 2018). In general, regulations assume di¤erent forms such as

zoning, minimum lot sizes, height restrictions, open space requirements and growth controls. Other

regulations, such as building codes and impact fees, can also a¤ect the elasticity of housing supply by

raising the construction costs. Measures targeted at relaxing supply restrictions may therefore help to

dampen real estate cycles.

8 Conclusion

In this paper the generalized smooth transition model proposed in Canepa and Zanetti Chini (2016) is

applied to house price series to investigate the asymmetrical behaviour of house price cycles in London.

To investigate whether the GSTAR model is an admissible speci�cation with respect to house price cycle

characteristics we use Monte Carlo simulation. In particular, we use the estimated parameters to simulate

the data from a GSTAR data generating process and we then use the dating approach suggested in Pagan

and Sossonov (2003) to identify housing market phases and test if the GSTAR model generates time series

that are able to re�ect the characteristics of real estate cycles such as average durations and amplitudes

of contractions and expansions, as well as other measures of the cycle shape. In this paper we also

consider how the GSTAR compares with alternative models. It is found that the GSTAR model is better

able to capture features of the cycle like deepness with respect to other competitive models. Finally,

using di¤erent measures of point and density forecast accuracy to evaluate the performance of alternative

speci�cations, we �nd that the GSTAR in most cases generates improvements in forecast performance,

thus outperforming other linear and nonlinear model speci�cations, especially in short-term horizons.

From the methodological point of view the estimation results of the GSTAR model allow us to support

most of the �ndings in the previous literature about the nonlinear behaviour of the housing markets in

large metropolitan areas (see for example Alqarelleh and Canepa, 2020; Miles, 2008; Cabrera et al., 2011).

However, looking at the results of the Pagan and Sossonov (2003) algorithm it is clear that the type of

transition function commonly adopted in threshold models such as STAR-type models may be suitable

for estimating house price dynamics at a higher level of aggregation (e.g. at country or regional level),

but may not be the best speci�cation to capture the asymmetric oscillations from the conditional mean

of house prices for the housing market in global cities such as London. This is because house prices

in these metropolises are subject to strong exogenous shocks that make the stochastic processes highly

nonlinear. We �nd that the econometric models such as LSTAR may be able to reproduce the steepness
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of the cycle, but not the depth, which we found to be an important feature of the data in hand. This

result may stem from the fact that STAR-type models have a transition equation that is symmetric by

construction. In this respect, using a class of model indexed by two shape parameters that in�uence the

symmetry and heaviness of the tails of the �tted transition equation improves the �t of the non-central

regions of the probability function and therefore the resulting model may be better able to capture the

asymmetries found in the house price series.

In this paper we �nd that cycles in the capital feature di¤erent characteristics with respect to other

large cities in the UK. This result highlights the fact that di¤erent types of econometric speci�cation

have to be used for global cities simply to re�ect their di¤erent economic and social structure. Looking

forward, a multivariate modi�cation of the GSTAR that allows us to investigate spatial spillover e¤ects

would be an interesting development. Econometric models designed to calibrate the spill-over e¤ects

of regional cycles are more di¢cult to build than those designed for national measures, because they

require additional dimensions (capturing heterogeneity between regions) and additional nonlinearities. A

suitable avenue in future research would perhaps be a modelling speci�cation for analyzing house price

cycles that allowed di¤erent frameworks for a capital city and for the rest of a given country.

APPENDIX

Table 1A. Neighborood classi�cation for house prices in Inner London

Inner London Boroughts

Super Prime Kensington and Chelsea

Westminster

Camden

City of London

Hammersmith and Fulham

Prime Tier 1 Islington

Wandsworth

Hackney

Lambeth

Prime Tier 2 Southwark

Tower Hamlets

Lewisham

Greenwich

Note: The City of London - this is not a "Borough" as it is governed by the City of London Corporation, but is an inner

London council. Since it is scarcely populated it is inserted in the "Super Prime" neighborhoods. Note that the Boroughs

are ranked by average house price with the most expansive Borough at the top.

Data generating processes used in the Monte Carlo experiment.
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AR(3) Model:

yt = 0:0019
(0:0007)

+ 0:212
(0:063)

yt�1 + 0:263
(0:062)

yt�2 + 0:254
(0:063)

yt�3 + 0:124
(0:031)

yt�3 + 0:010"t;

LSTAR Model:

yt = �0:588
(0:07)

+ 0:493
(0:046)

yt�1 � 0:538
(0:086)

yt�2 � 0:298yt�3
(0:053)

� 0:370
(0:01)

yt�4

�0:669
(0:055)

yt�1 � 0:486yt�2
(0:230)

+ 0:790yt�3
(0:363)

� 0:750yt�4
(0:231)

�

�
1� exp

�
�5:374

�
yt�3 � 0:015332

(0:007)

����1

GARCH(1,1) Model:

yt = 0:004
(0:0008)

+ 0:478
(0:061)

yt�1 + 0:010"t; with "t � N (0; 1)

�2t = 0:002
(0:0006)

+ 0:093
(0:036)

u2t�1 + 0:874
(0:0466)

�2t�1 with ut = �t"t
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