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Abstract

A Bartlett corrected likelihood ratio test for linear restrictions on the
cointegrating relations is examined in Johansen (2000). Simulation results
show that the performance of the corrected LR test statistic is highly
dependent on the values of the parameters of the model. In order to
reduce this dependency, it is proposed that the �nite sample expectation
of the LR test be estimated using the bootstrap. It is found that the
bootstrap Bartlett correction often succeeds in this task.
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1 Introduction

The procedure for estimating and testing cointegrating relationships described

in Johansen (1988) is available in virtually all econometric software packages

and is widely used in applied research. Brie�y this method involves maximizing

the Gaussian likelihood function and analysing the eigenvalues and eigenvectors

found using the reduced rank regression method. Once that the number of coin-

tegrating vectors has been determined, hypotheses on the structural economic

relationships underlying the long-run model can be tested using the likelihood

ratio (LR) test.

Although the LR test of linear restriction of cointegrating vectors has the

correct size asymptotically, many studies contain reports that the approximation

of the �2 distribution to the �nite sample distribution of the LR test can be

seriously inaccurate see, for example, Haug (2002), or Fachin (2000)). In order

to address this problem Johansen (2000) proposes a Bartlett adjustment for LR

statistic and analytically derives the asymptotic expansions needed to calculate

the expectation of the test statistic. Multiplying the unadjusted statistic by a

factor derived from an asymptotic expansion of the expectation test provides a

closer approximation of the resulting adjusted statistic to the �2 distribution,

thus reducing the size distortion problem. The draw back of the coin is that the

Johansen (2000) Bartlett correction factor is quite di¢ cult to apply. Moreover,

simulation results indicate that the correction factor is useful for some parameter

values but does not work well for others. As Johansen (2000) points out "the

in�uence of the parameters is crucial [.....] There are parameters points close

to the boundary where the order of integration or the number of cointegrating

relations change, and where the correction does not work well" (cf. Johansen

(2000) p.741).

We believe that the dependency on the parameter values may be reduced by

computing the Bartlett adjustment using the non-parametric bootstrap. This

method involves calculating a number of bootstrap values of the LR test sta-

tistic and estimating the expected value of the test statistic by the average

2



value of the bootstrapped LR statistics. The bootstrap Bartlett method was

�rst proposed in Rocke (1989) where hypothesis testing in seemingly unrelated

regression models was considered. Rocke�s simulation results showed that the

Bartlett adjustment for the LR test determined using the non-parametric boot-

strap was considerably more accurate than the Bartlett adjustment from the

second-order asymptotic method of Rothenberg (1984).

The purpose of this work is to see if the Bartlett adjustment approximated

using the bootstrap method is able to reduce the �nite sample dependency of the

null rejection probability of the LR test statistic on parameter values. If such

an application were to be successful, it would deliver improvements upon the

analytic Bartlett correction proposed in Johansen (2000) both in applicability

and accuracy.

It is also of interest to compare the bootstrap Bartlett method with the

straightforward bootstrap method, in which the signi�cance level assigned to

GT = �2(log(LR)) is the fraction of the Gi;T greater than GT . In principle

we may expect the two methods to obtain the same accuracy (i.e. similar

empirical sizes), but the former to be less computationally intensive than the

latter. Generally speaking, estimating a moment of a distribution requires fewer

trials than estimating the tail of the same distribution. This result is formally

proven in Rocke (1989).

Thus, in this paper the bootstrap is used in two ways: �rst, to approximate

a Bartlett-type correction; and second to estimate the p-value of the observed

test statistic. In addition, we compare the performance of the proposed proce-

dures with the F -type test of Podivinsky (1992). Finally, it is well known that

the Bartlett correction factor is designed to bring the actual size of asymptotic

tests close to their respective nominal size, but it may lead to a loss in power.

Accordingly, the power properties of the proposed procedures will be consid-

ered. Throughout the paper, the bootstrap accuracy in small samples is mainly

investigated through Monte Carlo studies, although an empirical application is

provided to illustrate the performance of the bootstrap with some real data.
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We will close this section by a brief presentation of the Bartlett correction.

In the next Section we introduce the LR test for linear restrictions on coin-

tegrated space, the Bartlett correction of Johansen (2000), the F -type test of

Podivinsky (1992) and the bootstrap inference procedures. In Section 3, the

design of the Monte Carlo experiment is explained and the simulation results

are reported. In Section 4 an empirical application is considered and Section 5

contains conclusions.

The Bartlett Correction

The Bartlett correction is based on a simple idea, but it can be very e¤ective

in reducing the �nite sample size distortion problem of the LR tests. Brie�y,

this method consists of scaling the test statistic by the ratio of its asymptotic

and estimated �nite sample expectations. In other words, instead of looking

directly at GT = �2(log(LR)); which as T !1 tends to G1; we focus on the

distribution of GT

E(GT )
: Given that GT

E(GT )
! G1

E(G1)
as T !1; we can write

GT t
E (GT )G1
E (G1)

:

Typically it is di¢ cult to �nd an exact expression for E (GT ), one can instead

�nd an approximation of the form

E (GT ) = q

�
1 +

B (�)

T

�
+O

�
T�2

�
;

where q is equal the degree of freedom parameter for the test. Thus the statistic

GT

1 +
B(�̂)
T

has expectation closer to that of �2 than GT : In Lawley (1956) it is proved

that, under the assumption of i.i.d. variables, the Bartlett correction not only

improves the mean but also implies that all cumulants of the corrected statistic

match that of a �2 density to the order O(T�3=2): The latter result explains

why the correction works so well in practice; see, for example, Barndor¤-Nielsen

and Cox (1984).
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The application of the Bartlett�s correction in the context of time series

models is relatively recent. For example, a correction factor for the LR tests for

AR(1) andMA(1) models is given in Taniguchi (1990) and an expression for the

Bartlett correction factor for models belonging to the stationary, invertible and

Gaussian ARMA family is obtained in Lagos and Morettin (2000). However,

the debate on the usefulness (or the legitimate use) of the Bartlett correction

for I(1) processes is still unsettled. Although it is established in Jensen and

Wood (1997) that, in the AR(1) case, the Bartlett correction only corrects

the �rst moment, results from Bravo (1999) and Nielsen (1997) showed that a

Bartlett-type correction to the LR test for unit root in practice can improve the

asymptotic approximation considerably.

2 Model and Tests

Consider the p-dimensional V AR model

�Yt = �
�
�0Yt�1 + �

0Dt
�
+
k�1X
i=1

�i�Yt�i + �dt + "t; t = 1; :::; T (1)

where Yt and "t are (p� 1) vectors, with "t v NID(0;
); and �Yt = Yt�Yt�1.
Matrices of coe¢ cients have the following dimensions: � and � are (p� r);

� is (p� pd); � is (pd � r) ; and �1:::; �k�1 are (p� p) :Also dt (pd � 1) and

Dt (pD � 1) are deterministic terms in (1). Once the cointegrating rank has

been established we can test for linear restrictions on cointegrating space. For

consistency with the framework of Podivinsky (1992), we focus on the hypothesis

H0 : � = H', whereH (p� s) for r � s � p is a known matrix that speci�es that

the restrictions (s) are imposed on all cointegrating vectors (r); see Johansen

(1996) for discussion of tests for other hypotheses. The test statistic for H0 can

be obtained from the concentrated likelihood function and is given by

GT = �T
rX
i=1

ln
h�
1� ~�i

�
=
�
1� b�i�i ; (2)
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where �̂i and ~�i are the usual eigenvalues implied by the maximum likelihood

estimation of the restricted and unrestricted models, respectively. The limiting

distribution of �̂ is a Gaussian mixture and GT is asymptotically distributed as

�2 (r (p� s)) under the null hypothesis.

A Bartlett correction factor for the LR test is derived in Johansen (2000).

This correction depends upon the null hypothesis on the cointegrating coe¢ -

cients of the V AR. In our case an approximation to order T�1 for the Bartlett-

correction factor is given by

E [�2 ln (LR)]
r(p� s) = 1 +

1

T

�
1

2
(p+ s� r + 1 + pd + kp)

�
(3)

+
1

Tr
[2p+ s� 3r � 1] v (�) + 2c (�) + cd (�))]

where v (�) = tr
n
�0
�1�

P
��

o
, with

P
�� = V ar(�0Y j�Yt; :::;�Yt�k+2),

cd = pdv (�), and the constant c (�) is given in Johansen (2000). Note that,

in Johansen (2002), a Bartlett correction factor for the LR test is derived

assuming that the adjustment parameter � is known. Although theoretically

interesting, this case is less relevant in applied work so we restrict our attention

to Johansen (2000) where this assumption is dropped.

Alternative small sample corrections of the LR test for linear restrictions on

cointegrating space have been proposed in Podivinsky (1992) and Psaradakis

(1994). Podivinsky suggested an F -type test while Psaradakis proposed a simple

correction factor for the LR test. However, results given in Canepa (2005)

showed that F -type test of Podivinsky (1992) largely outperformed the small

sample corrected LR test of Psaradakis (1994). Consequently we restrict our

attention to the former procedure.

After considering the analogy with the classical linear regression theory, it

is proposed in Podivinsky (1992) to base an approximation on an F -type test.

Let bS = �ri=1 �1� b�i� ;eS = �ri=1 �1� e�i� ;
6



and l be the number of parameters estimated subject to the maintained hypoth-

esis � = ��0, then

F =

�
~S � bS� = (r (p� s))bS= (T � l)

is taken to have an F distribution with (r (p� s) ; T � l) degrees of freedom

under H0.

Rather than relying upon either asymptotic theory or an analytical Bartlett

correction it is proposed below that the non-parametric bootstrap be used to

reduce the size distortion of the LR test. The bootstrap is used to obtain two

tests. The �rst of these procedures is in the spirit of Rocke (1989) and the

second is a straightforward application of the bootstrap p-value approach. We

will examine them in turn (note: the subscript (�) will be used to indicate the

bootstrap analog throughout the paper).

Calculating the bootstrap Bartlett corrected LR test (BSB) involves un-

dertaking a simulation study using the constrained estimates of �, denoted by

�̂ =
�
�̂; �̂; �̂i; �̂; �̂; 
̂

�
; conditional on the initial values Y0 and �Y0, as the true

values. Given these estimates and any required starting values, bootstrap data

can be generated recursively after resampling residuals. From each generated

sample, one obtains a bootstrap value of the LR statistic whose average, de-

noted by G
�
T , estimates the mean of the LR statistic under the null hypothesis.

The corrected statistic G�T =
GT (r(p�s))

G
�
T

is then referred to a �2 (r (p� s)) dis-

tribution. An heuristic explanation of why this procedure is asymptotically

valid is the following.

Let �dt = � (i.e. a constant term) and � = 0 in (1). Also de�ne �? and �?

as the p� (p� r) matrices, such that �0�? = 0 and �0�? = 0. By the Granger

representation theorem the process fYtg has the following Wold vector moving

average (MA) representation

Yt = C

tX
i=1

"i + C�t+ C1 (L) ("t + �dt) + Y0 (4)

where C = �? (�
0
?��?)

�1
�0?, and C1 (L) is a stable p�p lag polynomial. From
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the representation (4) it follows that fYtg can be rewritten as the sum of an

I(1) component given by

Y Pt = C

 
tX
i=1

"i + �t

!
= �? (�

0
?��?)

�1
 
�0?�+

tX
i=1

�0?�t

!
;

where
�
�0?�+

tP
i=1

�0?�t

�
represents the (p� r) common trends along with their

coe¢ cients �? (�
0
?��?)

�1, an I(0) component given by

Y st = C1 (L) ("t + �dt) ;

and an initial values denoted by Y0. Thus, the asymptotic properties of fYtg

depend on which linear combination of the process we consider. Cointegration

implies multiplying Y Pt by �0C = 0 so that linear combinations of �0Yt are

stationary (note that the initial values cancel). In other words, the cointegrating

vectors act as a detrending model and �0C1 (L) ("t + �dt) is a representation of

the disequilibrium error �0Yt (see for example Johansen (1996) for more details).

Turning to the non-parametric bootstrap, let F̂" denotes the empirical den-

sity function of the residuals. The resampling scheme imposes that the charac-

teristic polynomial

	�(z) = (1� ẑ)I � �̂�̂
0
ẑ �

k�1X
i=1

�̂i(1� ẑ)ẑi;

has p � r roots equal to 1 and all the other roots outside the unit circle

(0 < r < p). Thus the process generated by the resampling scheme

�Y �t = �̂�̂
0
Y �t�1 +

k�1X
i=1

�̂i�Y
�
t�i + �̂dt + "

�
t ;

where "�t v F̂", has the following MA representation

Y �t = Ĉ
tX
i=1

"�i + Ĉ�̂t+ Ĉ1 (L)
�
"�t + �̂ dt

�
+ Y �0 ;

and �̂
0
Y �t is stationary. Moreover, under weak regularity conditions, the partial

sum of the "�i satis�es the functional limit theorem
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T�1=2
[Tr]X
t=1

"�i
d!W (r);

where W (r) denotes an (p� r)-dimensional Wiener process with covariance 


and d! stands for weak convergence conditional on the sample Yt.

Turning now to the Bartlett correction, the bootstrap Bartlett estimator is

consistent for all � > 0, and for all $ > 0 if

lim
T!1

P
h
sup

���hpT �G�T � E(GT )� � $i� hpT (E(GT )� E1 (GT )) � $i��� > �i = 0:
Using the fundamental properties of the Mallows distance d2,see Bickel and

Freedman (1981), it can be proved that

l2

�p
T
�
G
�
T � E(GT )

�
� $;

p
T (E(GT )� E1 (GT )) � $

�2
� l2(M;M1)

2;

which shows that the distance between the bootstrap distribution and the �nite-

sample distribution can be bounded by the distance between the empirical den-

sity function (M) and the underlying distribution function (M1). However, the

following result holds true

lim
T!1

P
�
l2(M;M1)

2 > �
�
= 0:

by the Glivenko-Cantelli theorem and the strong law of large numbers. Thus,

the �rst order asymptotic validity of the procedure results from the fact that the

parameters of model (1) are consistently estimated, the asymptotic distribution

is a smooth function of the disturbances, and l2(M;M1)
2 ! 0.

The second bootstrap procedure is a straightforward application of the boot-

strap p-value approach. In this case the bootstrap values of LR are employed

to approximate the p-value of the observed value of the test statistic. The boot-

strap p-value is then compared with the desired null rejection probability: this

second test is denoted by BSP . By using the empirical distribution function

in place of some speci�c parametric distribution, the non-parametric bootstrap
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does not require a choice of error distribution and this feature may be appealing

to the applied worker. In the literature it has been shown that in many cases

the bootstrap delivers an automatic approximation to the Edgeworth expan-

sion; see Hall (1992). Thus it can be considered as a numerical approximation

to analytical calculations of one-term Edgeworth expansion. For cointegrated

V AR models, due to the intricate analysis, the ability of the bootstrap test to

provide second order re�nement is still an open question. An important break-

through in this literature is given in Park (2000) where asymptotic expansions

for the unit root models are developed and it is shown that the bootstrap test

provides asymptotic re�nements for the Dickey-Fuller tests. Considering that

Johansen�s rank tests are the multivariate extensions of the (augmented) Dickey-

Fuller tests, Park�s results are quite promising. In practice, however, whether

a particular asymptotically valid technique is useful in small samples can only

be evaluated by simulation. Thanks to the increases in the power of computers,

the number of studies evaluating the usefulness and the limitations of bootstrap

inference in cointegrating systems is growing rapidly. For example, computer

intensive methods for inference on cointegrating vectors are considered in Gre-

denho¤ and Jacobson (2001) and it is shown that the parametric bootstrap is

very e¤ective in reducing the �nite sample error in rejection probability. The

non-parametric bootstrap is examined in Fachin (2000) and the resulting boot-

strap test is found to be overly conservative. The results of Fachin (2000) are,

however, not con�rmed in this study.

The steps used to implement the non-parametric bootstrap can be summa-

rized as follows:

Step (1) : Estimate (1) and compute GT .

Step (2) : Resample the residuals from ("̂1; :::; "̂T ) independently with re-

placement to obtain a bootstrap sample ("�1; :::; "
�
T ). Generate the bootstrap

sample (y�1 ; :::; y
�
T ) recursively from y0 = 0 and ("�1; :::; "

�
t ) using the estimated

restricted model given in (1).

Step (3) : Compute the bootstrap replication of fG�T g using (y�1 ; :::; y�t ) :

10



If B is the number of bootstrap samples, the two bootstrap alternatives to

the use of asymptotic critical values can be implemented as follows.

Step (4) : Calculate the mean value of the bootstrap values of the test, G
�
T =

T�1
TP
i=1

G�i;T . A Bartlett-type corrected statistic is therefore BSB =
r(p�s)GT

G
�
T

.

The BSB statistic is then compared with critical values from the asymptotic

�2 (r (p� s)) distribution.

Step (5) : Compute the p-value function

P (GT ) = B
�1

BX
i=1

I
�
G�i;T � GT

�
;

where I(�) is the indicator function that equals one if the inequality is satis�ed

and zero otherwise. The bootstrap test (BSP ) is carried out by comparing

P �(GT ) with the desired critical level and rejecting the null hypothesis if G�i;T

in not greater than GT .

3 The Monte Carlo experiment

Can the bootstrap be successfully applied to approximate the �nite sample

expectation of the LR test? Also how does it compare to the available analytical

correction? Moreover, what can we say about alternative inference procedures?

These are the questions addressed in this section. With this target in mind, two

groups of experiments have been designed. In the �rst group of experiments

the e¤ects of varying the model complexity (i.e. sample size, number of lags,

number of cointegrating vectors) in the V AR model will be investigated. The

second group of experiments is in the spirit of Haug (2002); also see Gonzalo

(1994). The performance of the test statistics will be evaluated on the basis

of their behavior in term of empirical sizes in response to variations of the key

parameters in�uencing the DGP .

Two models were simulated; the �rst imposes only one cointegrating vector

(i.e. � =
�
�11 � 1 �21 �31 0

�0
), while model 2 allows for two cointegrat-

ing vectors (i.e. r = 2) among four integrated variables. Both models allow for
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one to three lags (k). Thus, the DGP s are given by:

DGP = DGP1 :

2664
�y1t
�y2t
�y3t
�y4t

3775 =
2664
�11
0
0
0

3775 � �11 �21 �31 0
� 2664

y1t�1
y2t�1
y3t�1
y4t�1

3775+
2664
"1t
"2t
"3t
"4t

3775 (5)

DGP = DGP2

2664
�y1t
�y2t
�y3t
�y4t

3775 =
2664
�11 0
0 �22
0 0
0 0

3775� �11 �21 �31 0
0 �22 �32 0

�2664
y1t�1
y2t�1
y3t�1
y4t�1

3775+
2664
"1t
"2t
"3t
"4t

3775
where

�
"1t; "2t "3t "4t

�0
are i.i.d. with "it � N(0;
), V ar ("it) = �2"i and

Cov("it; "jt) = 0.

All simulations were carried out using the matrix programming language

GAUSS. The Monte Carlo experiment is based n = 10; 000 replications for the

LR, BRT , F -type tests and (unless otherwise speci�ed) on n = 1; 000 replica-

tions for BSB and BSP . All the bootstrap distributions are generated from

resampling and calculating the test statistic 400 times, (i.e. B = 400). The

random number generator was restarted for each T values and the initial value

set equal to zero. Note that in Johansen�s procedure the maximum likelihood

estimator of � in equation (1) is calculated by as the set of eigenvectors corre-

sponding to the s largest eigenvalues of S00kS
�1
00 S0k with respect to Skk , where

S00; Skk and S0k are the moment matrices formed from the residuals �yt and

yt�k, respectively onto the �yt�j : In this paper in place of the conventional

algorithm for cointegration analysis (i.e. the algorithm for maximum likelihood

estimation that use the second moment matrices) all the simulation results re-

ported are obtained using an algorithm based on QR decomposition In partic-

ular, we follow "Algorithm 3" in Doornik and O�Brien (2002), (p. 189). The

rationale of doing so is to obtain simulation results that are more numerically

stable.
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3.1 The probability of type I error

As far as the �rst group of experiments is concerned the Monte Carlo results

can be summarized as follows. The �rst thing to note in Table 1 is that in-

ference based on �rst order asymptotic critical values is markedly inaccurate

with excessively high rejection rates. In general, the proportionate error in null

rejection probability is higher the lower the nominal size of the test. For exam-

ple, for r = 1, T = 50, k = 1 and nominal size of 1%, the empirical size can

be nearly four times as large as the reference nominal size, whereas when the

nominal size is 10% the empirical size is approximately twice as much the nom-

inal size. Increasing the number lags, k, dramatically increases the deviation

from the nominal levels. By contrast, allowing more cointegrating vectors, r,

in the system slightly reduces the size distortion. Turning to empirical sizes for

BRT , we can see that they are much closer to the nominal sizes than the �rst

order asymptotic critical values. The F -type test shows empirical sizes similar

to those of BRT , whereas BSB and BSP seem to be more sensitive to the

number of lags in the DGP; with the latter slightly outperforming the former.

Overall, the results in Table 1 show that the small sample adjusted LR

tests and their bootstrap counterparts are quite e¤ective in reducing the small

size distortion problem. However, introducing many nuisance parameters in the

model a¤ects the size accuracy of all test statistics under consideration. The

impression is that BRT , BSB, BTP and F -type act in a similar fashion to the

asymptotic tests, only to a much less extent. Thus the performance of these

tests deteriorate when the performance of the asymptotic LR test worsens.

PLEASE INSERT TABLE 1 ABOUT HERE.

Coming to the second group of experiments, we now evaluate the sensitivity

of the test statistics to variations of key parameters in the DGP . Our target is
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to detect regions of the parameter space where a large size distortion is more

likely to occur. With this in mind we restrict our attention to the DGP with

r = 1 and k = 1 (i.e. DGP = DGP1). This may be seen as a limitation of

our study. However, one has to keep in mind that a test or a class of tests

that does not perform well in simple situations cannot be expected to do well

for more complicated models. Moreover, including more nuisance parameters

would involve losing control of the experimental design.

What are the target parameters? Calculating the Bartlett correction factor

using equation given in (3) with p = 4, k = 1, s = 1, pd = 0, pD = 0, cd(�) = 0;

v(�) = � �0�(2+�0�)
�0
�1��0
� , and c(�) = �2

�0�(1+�0�)
�0
�1��0
� gives

E [�2 ln (LR)]
3

= 1 +
14

2T
� 1

T

�0�

�0
�1��0
�
��

5
�
2 + �0�

�
+ 4(

�
1 + �0�

��
:

Thus, the Bartlett correction factor depends on �0�, �0
�1��0
� and T .

However, it can be shown that not only

E [�2 ln (LR)] =3 = f
�
�0�; �0
�1��0
�; T

�
;

but also the that the parameters enter into distribution of the LR test through

the same function; see Johansen (2000). Therefore, by varying the arguments

in f (�) ; one is able to analyse the e¤ect of variations of the parameters on the

empirical sizes of the test statistics. One way of doing it is to change the coordi-

nate of the system and �nd a canonical form of the DGP as in Johansen (2000,

2002). This implies �xing the cointegrating vector and change the coordinate of

the system so that only two parameters, both function of all parameters in the

V AR are left. However, in our case we are interested in controlling the loading

(�) and the cointegrating coe¢ cients (�) and the covariates (
) separately so

that regions where the dependency of the size distortion of the LR test from

the parameter space is stronger can be detected.

Experiments are carried out with T = (50; :::; 150); �11 = (0:2; 0:5, 0:7) in

� =
�
�11 0 0 0 0

�
; and � = (0:5, 1, 2) in 
. Coming to �, one problem
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we face is that the long-run cointegration relationship depends on a relatively

large number of parameters. A possible way to address this issue is to change

the coordinates of the system and rotate the V AR(1). This transformation

would leave the statistical analysis of the model unchanged, but it may lead to

a reduction in the number of parameters in � without loss of generality. Under

H0 : � = H', model (5) can be rotated into

2664
�X1t
�X2t
�X3t
�X4t

3775 =
0BB@
1
0
0
0

1CCA� �11 �21 0 0
�2664

X1t�1
X2t�1
X3t�1
X4t�1

3775+
0BB@
"1t
"2t
"3t
"4t

1CCA
where "t � N(0; I) and Xt is used (instead of Yt ) to indicate the rotated

V AR(1): Thus a simple rotation of the process highlights the fact that not all

the parameters in � are equally important. Accordingly, the parameter �31 can

safely be set equal to zero.

Another issue we face is how to select the set of parameters for the remaining

parameters in �. These have to chosen in such a way that the stability of the

system is preserved. In our case we have

� =

�
�11 2 �1:9;�1:5;�0:9;�0:5;�0:3;�0:2;

�21 2 0:2; 0:3; 0:4; 0:9; 1:5

�
:

In Table 2 we report the empirical sizes of the tests for a nominal 5% level.

Other parameters given, we can see that the size distortion of the LR test highly

depends on the magnitude of � (i.e. the parameter that controls the speed of

the adjustment to the equilibrium cointegrating relationship). When the speed

of the adjustment is low (i.e. �11 = 0:2) the size distortion of the test can be

large and the convergence to the nominal size slow. Generally speaking, the

results show that the higher the magnitude of � (i.e. the faster the adjustment)

the lower the size distortion. This result is consistent with the literature; see, for

example, Gonzalo (1994), Haug (2002) and Fachin (2000). Coming to BRT , the

size distortion of the Bartlett corrected LR test is again highly dependent on the

magnitude of �, whereas its bootstrap counterpart is much less so: for �11 = 0:5
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(which is quite close to value found in empirical studies), no matter the sample

size the empirical size is within the 95% con�dence interval (i.e. 3.6-6.4). The

ordinary bootstrap test also performs well. By contrast, the F -type test while

able to capture the dependency on the number of the estimated parameters does

not take into account the magnitude of the parameters in itself, thus generally

speaking it performs only slightly better than the asymptotic LR test.

Turning to �, it is clear from Table 2 that the distribution of the LR test

statistic is invariant to changes of the standard error of the shocks "it, and, of

course, so are the other test statistics. It would be of interest to consider an

experimental design where Cov("it; "jt) 6= 0 since it is well know that correlation

between the noise terms can adversely a¤ect the �nite sample performance of

the LR test; see for example Toda (1995). However, in this case we would

not expect the ordinary bootstrap to work because the correlation between the

innovations would be lost in the resampling and a di¤erent kind of bootstrap

procedure, e.g., the stationary bootstrap, should be applied. For this reason we

shall leave this issue for future study.

PLEASE INSERT TABLE 2 ABOUT HERE

Figure 1 shows the distribution of the test statistics considered as a function

of �11 and �21 with the sample size �xed at T = 50: From Figure 1 it is clear

that empirical size of the LR test (reported on the z-axis) rapidly increases

when �11 and �21 get closer to 0. Note that if �11 is in the interval (�2; 0],

then the process Yt is I(1): When �11 = 0 , the process is a pure I(1) process

which does not cointegrate, whereas if �11 < �2 or �11 > 0 the process Yt

is explosive. Thus, as one may expect, the LR test does not perform well for

parameter points close to the boundary where the order of integration changes

or the number of cointegrating relations changes. The F -type test mimics the
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behavior of the LR test but with empirical sizes closer to the nominal ones. By

contrast, BSB works remarkably well, largely outperforming BRT and partially

outperforming BSP .

3.2 The probability of type II error

The evaluation of the power of the test statistics has been carried out by

generating the data under the following alternatives: H1 : �41 = 0:15 and

H1 : �41 = 0:3 with r = 1, k = 1; 2; 3, and T = 50; 100; 150. From Table

3; we can see that, in general, as expected, the rejection frequencies increase

with the sample sizes and the distance between the null and the alternative.

The power estimates for the larger sample size T = 100 are reasonable for all

the alternatives. Turning to the comparison of the power among the di¤erent

procedures, overall we found that correcting the test statistics for the size shifts

the estimated power function down. There is evidence that the tests BRT ,

BSP , BSP and F -type share similar power properties, with no test uniformly

outperforming its competitors. The results for the sensitivity of the parameter

space are not reported in detail here but show that a slow adjustment to the

equilibrium worsens the rejection frequencies for BRT , BSP and BSP , whereas

the changes of the standard deviation of the errors do not have an important

impact on the power estimates.

PLEASE INSERT TABLE 3 ABOUT HERE

4 An empirical example

In this section we analyse the �nite sample properties of the inference procedure

considered using data from the Danish economy on the demand for money as

used in Johansen and Juselius (1990). These are quarterly data from 1974:1 to
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1987:3 on log M2 monetary aggregate ( mt ), the real log income ( yt), the bond

rate ( ibt) and the deposit rate (i
d
t ).

Once again, the performance of the test statistics has been investigated by

Monte Carlo. The starting point of the simulation experiment is to replicate

the results of Johansen and Juselius (1990) in order to get the DGP parameter

values; also see Johansen (1996). Accordingly, using the Danish data, the model

in (1) has been estimated with a restricted constant term and four seasonal

seasonal dummies. Using the rank test procedure, we have found no evidence

in the Danish data for more than one cointegration relation. Thus, solving the

eigenvalue problem, we have found that the estimated long-run � coe¢ cients

associated to the �rst eigenvalue (i.e. �̂1 = 0.4332) are

�̂
0
=
�
1:0000 �1:03295 5:20692 �4:21588 �6:05993

�
while the normalised adjustment coe¢ cients of �̂ are

�̂0 =
�
�0:21295 0:11502 0:02318 0:02941

�
:

Finally,


̂ =

0BB@
0:01965 0 0 0
0:01150 0:01706 0 0
�0:00875 0:00402 0:01818 0
�0:00148 �0:00061 0:00095 0:00490

1CCA :
We then have investigated the rejection probability of the test for linear

restrictions on �̂ using � =
�
�̂
0
; �̂0; 
̂

�
in the GDP with the initial values

taken from the estimated initial values, and to simplify, the parameters for �̂

have been set equal to zero. As far as the Monte Carlo design is concerned, the

simulation experiment has been carried using the bootstrap algorithm described

in Section 2, whereas the Bartlett correction factor for the LR test has been

calculated using (3) with p = 4; r = 1, s = 1, k = 2, pD = 1, pd = 0 and the

estimated parameters in �. The restriction under consideration is H0 : �1 = 1

in �̂
0
=
�
�1 �2 �3 �4 �5

�
(i.e. the estimated coe¢ cient is the same as

the value in the DGP ).
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In Table 4 the simulation results are reported for the rejection probability for

the size of the test statistics at the 5% nominal level, while for the experiment

evaluating the power the data has been generated under the alternative H1 :

�1 = 1:3.

PLEASE INSERT TABLE 4 ABOUT HERE

Simulation results from Table 4 show that the estimated size for the LR

test based on the �rst order asymptotic approximation is more than 4 times

the reference nominal size, thus con�rming the previous results. Among the

corrected versions of the test, BRT outperforms the F -type test as well as the

bootstrapped counterpart (BSB), although only marginally. Turning to esti-

mated rejection rates under the alternative, the F -type test appears to be most

powerful among modi�ed LR tests, but this is possibly a spurious result due to

larger size distortion under the null. By contrast, BRT , BSP , and BSP share

similar power properties, with BRT slightly outperforming the competitors.

5 Concluding remarks

This paper investigates through Monte Carlo simulation the �nite sample prop-

erties of modi�ed versions of the LR test for linear restrictions on cointegrated

relationships. The Bartlett corrected LR test of Johansen�s (2000) and the F -

type test of Podivinsky (1992) are both studied. The performance of these test

statistics is also compared with the �nite sample behavior of the tests obtained

using the bootstrap procedure. The bootstrap is used in two ways: �rst, to

approximate a Bartlett-type correction; and second, to estimate the p-value of

the observed test statistic. The need for modi�ed versions is indicated by the

poor performance of the standard asymptotic check which is also included. The

assessment of the small sample rejection probabilities of the �ve test statistics is
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then carried out: i) by varying the model complexity (i.e. sample size, number

of lags, number of cointegrating vectors) in the V AR model; and ii) by evalu-

ating their behavior in response to variations of the key parameters in�uencing

the DGP .

The main simulation results can be summarized as follows. As far as the

asymptotic LR test is concerned, our study mainly con�rms previous research

�ndings; see, for example, Haug (2002), Podivinsky (1992), or Gredenho¤ and

Jacobson (2001)). More precisely, it is found that, for small to moderate sam-

ple sizes, inference based on �rst order asymptotic approximation is largely

inaccurate and the size distortion of the asymptotic test dramatically worsens

when more nuisance parameters are included in the DGP . In addition, the

size distortion of the LR test is sensitive to the magnitude of the cointegrating

coe¢ cients and also to the magnitude of the parameter that controls the speed

of the adjustment to the equilibrium cointegrating relationships (the faster the

adjustment to the equilibrium the lower is the size distortion of the test sta-

tistic). The Bartlett correction of Johansen (2000) dramatically improves the

behavior of the LR procedure in several instances, but still leaves something to

be desired particularly for parameter points close to the boundary where the

order of integration changes or the number of cointegrating relations changes.

More generally, as expected, the distribution of the levels of the corrected test

mimics the distribution of the asymptotic LR test. Thus the performance of

the former deteriorates in regions of the parameter space where the the per-

formance of the latter worsens. From our simulation results, it appears that

calculating an approximation to the �nite sample expectation of the LR test by

using the bootstrap can be worthwhile. The bootstrap Bartlett corrected test

appears to be less sensitive to the values of the parameters of the DGP than

its analytical counterpart, although it is slightly more sensitive to the inclusion

of nuisance parameters. The bootstrap p-value test also works �ne, however (as

Rocke (1989) points out) the bootstrap Bartlett adjustment requires fewer trials

to obtain the same order of accuracy than bootstrap p-value test and is therefore
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less computationally demanding. Finally, for small sample sizes (T � 50), the

results for the F -type test are mixed and it performs only slightly better than

the asymptotic LR test in some cases.

As concluding remarks we give some practical considerations. Based on our

Monte Carlo experiment, when testing for linear restrictions of the cointegrat-

ing vectors, the Bartlett corrected LR test, the bootstrap Bartlett LR test, and

the F -type all deliver reasonable accurate inference for sample sizes of approx-

imately 100 observations (or about 25 years quarterly data). Thus, if this or

a larger sample size is available, all of these tests are reliable. However, when

the sample size is smaller, a possible strategy for improving the performance

of the LR test is the following: �rst, calculate the roots of the characteristic

polynomial and determine under what conditions on the parameters the process

ful�l the root assumption (see Johansen,1996, p. 14); second, estimate the

model applying the Johansen reduced rank regression procedure; and third, if

the estimated parameters are close to the boundary of the parameter space,

use the bootstrap to approximate the �nite sample expectation of the LR test,

otherwise the analytical Bartlett correction would probably be satisfactory.
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Table 1. Size: Rejection frequencies (in percent) under the null of �41 = 0 and�
�41 �42

�
=
�
0 0

�
(r = 1 and r = 2, respectively ). Parameters in the

DGP : �11 = �22 = 1, �11 = 0:4, �21 = 1:7, �31 = 0:1, �22 = 0:4, �32 = 0:5,


 = (0; I) :
Nominal Size : 10%

LR BRT BSB BSP F
r = 1; k = 1; T = 50 19.8 11.4 11.8 9.1 12.6
r = 1; k = 2; T = 50 33.8 21.9 25.6 21.5 24.3
r = 1; k = 3; T = 50 50.2 37.1 37.4 37.0 40.2
r = 2; k = 1; T = 50 19.1 11.6 12.3 12.2 8.8
r = 2; k = 2; T = 50 30.3 19.8 24.5 24.7 17.1
r = 2; k = 3; T = 50 44.2 31.4 33.2 33.5 28.9
r = 1; k = 1; T = 100 13.3 9.7 11.6 9.8 10.3
r = 1; k = 2; T = 100 18.4 13.7 16.2 15.2 14.7
r = 1; k = 3; T = 100 24.1 18.4 20.3 19.6 19.8
r = 2; k = 1; T = 100 13.5 10.5 12.4 11.7 9.2
r = 2; k = 2; T = 100 17.6 13.5 15.0 15.0 12.6
r = 2; k = 3; T = 100 22.3 17.2 18.0 18.1 16.7
r = 1; k = 1; T = 150 12.8 10.1 10.2 9.0 10.6
r = 1; k = 2; T = 150 15.7 12.6 12.9 12.0 13.4
r = 1; k = 3; T = 150 18.8 15.1 15.2 14.9 16.3
r = 2; k = 1; T = 150 12.4 10.2 10.8 11.2 9.6
r = 2; k = 2; T = 150 14.7 11.8 14.7 15.1 11.3
r = 2; k = 3; T = 150 17.5 14.2 15.6 16.0 14.1

25



Table 1 Continue. Size: Rejection frequencies (in percent) under the null of

�41 = 0 and
�
�41 �42

�
=
�
0 0

�
(r = 1 and r = 2, respectively ). Parameters

in the DGP : �11 = �22 = 1, �11 = 0:4, �21 = 1:7, �31 = 0:1, �22 = 0:4,

�32 = 0:5, 
 = (0; I)
Nominal Size : 5% 1%

LR BRT BSB BSP F LR BRT BSB BSP F
r = 1; k = 1; T = 50 12.2 5.6 5.7 5.7 6.9 3.9 1.4 1.4 0.8 1.8
r = 1; k = 2; T = 50 23.8 11.9 13.2 13.0 15.2 10.1 3.9 3.7 3.7 5.0
r = 1; k = 3; T = 50 40.3 25.1 26.3 26.2 29.7 22.6 11.4 11.2 11.1 13.6
r = 2; k = 1; T = 50 11.2 6.0 6.2 6.8 4.2 3.4 1.1 1.7 1.6 0.5
r = 2; k = 2; T = 50 20.6 11.9 15.7 15.1 9.61 8.7 3.5 5.3 5.7 2.1
r = 2; k = 3; T = 50 33.1 23.4 24.5 24.0 18.9 16.3 7.6 8.5 8.7 5.6
r = 1; k = 1; T = 100 7.5 4.5 5.1 5.1 5.2 2.0 1.0 1.1 0.8 1.1
r = 1; k = 2; T = 100 11.2 7.8 7.6 7.5 8.1 3.3 1.8 2.1 1.9 1.9
r = 1; k = 3; T = 100 15.7 8.1 8.3 8.2 12.0 5.8 3.4 3.6 3.5 3.7
r = 2; k = 1; T = 100 7.5 5.1 5.8 6.2 4.4 2.1 1.0 1.0 1.2 0.8
r = 2; k = 2; T = 100 10.7 7.3 8.0 7.6 6.7 3.3 1.9 2.1 2.1 1.5
r = 2; k = 3; T = 100 14.6 10.7 11.2 10.9 9.6 4.8 3.0 3.2 3.3 2.6
r = 1; k = 1; T = 150 6.5 4.8 4.6 4.6 4.8 1.3 0.8 1.1 0.8 1.0
r = 1; k = 2; T = 150 9.0 6.7 7.0 6.8 7.0 2.3 1.4 1.5 1.3 1.6
r = 1; k = 3; T = 150 11.3 8.3 8.6 8.4 9.2 3.2 2.2 2.4 2.2 2.4
r = 2; k = 1; T = 150 6.7 5.0 6.1 6.5 4.4 1.3 0.9 1.3 1.4 0.7
r = 2; k = 2; T = 150 8.1 6.3 7.8 8.0 5.9 2.1 1.3 1.4 1.2 1.0
r = 2; k = 3; T = 150 10.1 8.0 9.1 9.5 7.1 2.7 1.7 1.8 1.7 1.5
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Table 2. Size: Sensitivity analysis; rejection frequencies (in percent) under the

null of �41 = 0. Results for � and � (DGP with r = 1, k = 1, T = 50; :::; 150,

nominal signi�cance level 5%).
LR BRT BSB BSP F

� = 0:2; � = 1 T = 50 30.6 12.0 8.1 9.2 23.0
T = 100 17.8 9.2 6.5 6.4 14.5
T = 150 12.1 6.9 5.6 6.1 10.3

� = 0:5; � = 1 T = 50 15.1 7.4 5.5 6.0 10.2
T = 100 8.4 5.1 5.3 5.1 6.5
T = 150 7.2 5.1 5.7 5.5 6.2

� = 0:7; � = 1 T = 50 11.7 5.8 4.5 4.7 7.4
T = 100 7.0 4.7 5.3 5.6 5.4
T = 150 6.5 4.7 5.3 5.3 5.4

� = 1; � = 0:5 T = 50 9.6 4.9 5.1 5.1 5.5
T = 100 6.7 4.7 5.4 5.4 5.1
T = 150 6.3 4.9 4.4 4.7 5.8

� = 1; � = 1 T = 50 9.5 5.1 4.4 4.5 5.8
T = 100 6.6 4.6 4.9 4.7 5.0
T = 150 5.9 4.4 5.4 5.4 4.8

� = 1; � = 2 T = 50 9.3 5.0 5.3 4.7 5.7
T = 100 6.6 4.4 5.8 5.6 4.7
T = 150 6.4 4.8 4.6 4.7 5.2

� = 0:2; �11= �0:2; �21= 0:5 T = 50 38.1 29.1 8.1 10.5 29.5
T = 100 30.0 7.2 8.0 9.5 26.3
T = 150 21.8 7.4 5.4 6.4 19.4

Note: The following values are chosen, unless stated otherwise: �11 = �0:9,

�21 = 0:9.
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Figure 1: Size: Sensitivity analysis for � ( rejection frequencies at nominal level 5%

and T = 50 ).
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Table 3. Power: Rejection frequencies under the alternative. Parameters in the

DGP : �11 = �22 = 1, �21 = 1:7, �31 = 0:1, �22 = 0:4, �32 = 0:5, 
 = (0; I).
H1: �41= 0:15 H1: �41= 0:3
LR BRT BSB BSP F LR BRT BSB BSP F

r = 1; k = 1; T = 50 51.5 38.1 39.4 38.7 40.2 85.4 77.5 77.3 76.6 78.9
r = 1; k = 2; T = 50 54.1 39.9 43.1 43.7 42.8 79.4 69.0 73.3 73.4 71.6
r = 1; k = 3; T = 50 61.4 46.7 48.7 49.1 50.9 78.3 66.0 72.4 72.6 69.8
r = 2; k = 1; T = 50 55.1 38.8 41.9 41.1 33.8 85.8 78.5 80.6 80.6 75.0
r = 2; k = 2; T = 50 52.5 39.3 44.5 44.5 34.8 79.6 70.2 72.9 72.8 66.1
r = 2; k = 3; T = 50 57.3 43.2 50.3 50.2 39.8 76.6 65.4 66.0 66.1 62.1
r = 1; k = 1; T = 100 88.1 85.0 87.1 87.2 85.6 99.7 99.6 99.6 99.6 99.6
r = 1; k = 2; T = 100 84.8 80.9 82.1 81.7 81.9 98.9 98.4 98.9 98.6 98.5
r = 1; k = 3; T = 100 82.2 76.8 80.2 79.9 78.6 97.1 95.7 96.2 96.0 96.1
r = 2; k = 1; T = 100 88.4 85.8 86.9 86.4 84.9 99.6 99.5 99.5 99.4 99.4
r = 2; k = 2; T = 100 85.6 82.1 83.7 83.4 81.2 99.0 98.5 98.7 98.6 98.4
r = 2; k = 3; T = 100 82.8 78.1 80.0 79.9 77.4 97.4 96.4 96.7 96.5 96.3
r = 1; k = 1; T = 150 98.3 98.0 96.8 98.7 98.0 100 100 100 100 100
r = 1; k = 2; T = 150 97.5 96.8 96.9 96.8 97.0 100 100 100 100 100
r = 1; k = 3; T = 150 96.2 95.3 95.8 95.6 95.3 99.9 99.8 100 100 99.9
r = 2; k = 1; T = 150 98.1 97.8 98.2 98.0 97.7 100 100 100 100 100
r = 2; k = 2; T = 150 97.3 96.6 97.5 97.5 96.5 100 100 100 100 100
r = 2; k = 3; T = 150 96.2 95.3 95.9 95.6 95.2 99.9 99.8 99.8 99.8 99.8
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Table 4. The Danish data: rejection frequencies for the size and the power, in

percent, at nominal level 5%.
T = 53 LR BRT BSB BSP F
Size 20.5 10.4 11.5 11.6 12.6
Power 83.6 73.6 73.1 73.1 77.1
Note: n = 10; 000, B = 400. The asymptotic distribution is a �2 (3).
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