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Directed technological change and technological congruence: 
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ABSTRACT. Technological congruence implements the analysis of directed 
technological change showing how the match between the relative size of outputs’ 
elasticity and the relative abundance and cost of production factors has powerful 
effects on total factor productivity (TFP). Smart specialization strategies can rely 
upon technological congruence to support the introduction and diffusion of new 
directed technologies characterized by the best mix of factors relative cost -as 
determined by pecuniary externalities in the regional factor markets- and output 
elasticity. The evidence of 278 European regions in the years 1980-2011 confirms 
that the levels and the changes in technological congruence, brought about by the 
introduction of directed technological changes, have significant effects on the levels 
and the changes of TFP. The key policy implication is that the optimal S3 policy mix 
should not only look at the history of local industrial or technological specializations, 
but it should also take into account the pecuniary externalities that characterize local 
factor markets to promote technological changes directed to augmenting the output 
elasticity of the cheaper regional production factors. 
 
JEL Classification: O11, O30. 
 
KEY WORDS: S3; Directed technological change; Technological congruence; Local 
factor markets; Pecuniary externalities; Output elasticity; Total factor productivity. 
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1 Introduction 
 
Smart specialization strategy (S3) is attracting increasing attention by policy makers 
to articulate a new framework of regional and innovation policy. The S3 approach 
combines in an original frame innovation and regional policies suggesting the need to 
implement a new framework of regional policy measures aimed at strengthening and 
improving local economic conditions by leveraging the structural characteristics of 
the regional economy (Foray et al., 2009). According to the S3 regional policy should 
rely upon a bottom-up selective innovation policy directed at supporting the 
introduction of innovations that impinge upon the local stock of technological 
knowledge and competence and use intensively the factors that are more abundant in 
the local factor markets (Aghion et al., 2011).  
 
So far, the S3 has received more attention by policy makers than by economic 
analysis (Foray, 2015; Radosevic et al., 2017). Much literature has worked to 
strengthen the theoretical foundations of the S3 grafting the results of the 
investigations about the role of regional branching (Boschma and Gianelle, 2014). 
This approach stressed the importance of relatedness in the evolutionary dynamics 
underpinning the emergence of new industrial and technological activities out from 
the array of existing local activities. The regional branching literature has provided 
large evidence showing that regions will stay close to their existing capabilities when 
moving into new products and technologies (Boschma and Frenken, 2011). 
 
In this framework, the central role of relatedness in the process of regional 
diversification is considered as a pillar of the S3 approach (Boschma, 2014). Smart 
specialization emerges as an outcome of the regional branching process, in which the 
proximity or relatedness to the existing structure of local competences constrains the 
direction of possible diversification avenues (Boschma, 2017; Colombelli et al., 
2014). 
 
This paper aims at contributing the theoretical foundations to the S3, by articulating 
its relationship with the notion of technological congruence. This latter stresses the 
importance of localized learning dynamics and the accumulation of competences in 
local contexts characterized by specific conditions of factors’ markets (David, 1975; 
Abramowitz and David, 1996). The technological congruence approach related to 
regional technological diversification refers to the capacity to introduce new biased 
technologies that can take advantage of the pecuniary externalities that characterize 
existing factor markets’ conditions, in terms of factors scarcity and relative costs. 
 
The emphasis on the structure of local economic activities therefore makes the 
technological congruence approach suitable to fruitful combination with the S3 
approach and its theoretical foundations grounded in the economic geography 
literature. 



3 
 

 
Using a dataset of 278 European regions in the years 1980-2011, we confirm that the 
levels and the changes in technological congruence have significant effects on the 
levels and the changes of total factor productivity (TFP). The policy implication is 
that the S3 policy mix is efficient as long as it not only stimulates the development of 
development trajectories based on the exploitation of cumulative local learning 
dynamics, but it also includes specific technology policies aiming at increasing the 
output elasticity of the cheaper factor at local level. Such effort would provide the S3 
approach with a stronger background that enables to widen its scope of application 
and implement its selection procedures. In this sense, the notion of technological 
congruence provides a parallel and yet complementary perspective on S3, as 
compared to the regional branching approach. 
 
In the rest of the paper section 2 articulates the relationships between S3, related 
diversification and technological congruence. Section 3 presents the hypothesis. 
Section 4 provides the empirical evidence. Section 5 summarizes the main results of 
the analysis and elaborates the policy implications. 

2 Theory 
 
The standard notion of economic growth was not able to capture the role of regional 
heterogeneity (Krugman, 1991; Blanchard, 1997; Acemoglu and Dell, 2010). In 
recent years, the regional branching approach has been applied to explain how the 
regional endowment of production factors impacts on the introduction of innovations 
(Boschma and Frenken, 2011a; Montresor and Quatraro, 2017).  
 
The strong consensus and the widespread attempts to use the S3 as a basis to 
articulate a new framework to support inclusive growth at the European level with a 
bottom-up approach able to identify and select the activities that are able at the local 
level to yield faster growth of output and productivity, requires an effort to 
implement its theoretical foundations. Like we will articulate in the following 
subsection, the analysis of the mechanisms of related diversification and regional 
diversification and regional branching that have made a first important step to 
provide an analytical framework to S3. Building upon these results we propose an 
additional and complementary step to strengthen the economic foundations of the S3 
approach.  
 
The notion of technological congruence, based upon the analysis of the pervasive role 
of pecuniary externalities, i.e. the persistent variety of factor costs across regions, and 
their role in directing the introduction of biased technological change can contribute 
this endeavor (David, 1975; Abramowitz, 1986; Antonelli, 2016). 
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2.1 Related diversification and regional branching 
 
The concept of smart specialization shares the main principles of the construction of 
regional advantages, which requires regions to identify technology-based 
development patterns, drawing upon knowledge, variety and policy platforms 
(Oughton et al., 2002; Asheim et al., 2011; Boschma, 2014). In turn, the construction 
of regional approach identifies “related variety” as the main driver of diversification 
and industrial branching at the regional level (Boschma, 2011; Boschma and 
Frenken, 2011b).  
 
Technical or cognitive proximity amongst sectors or technologies shapes regional 
development trajectories in such a way that competences accumulated over time are 
likely to create dynamic irreversibility, engendering path-dependent diversification 
dynamics (Boschma et al., 2013; 2014; Colombelli et al., 2014; Essletzbichler 2015; 
Montresor and Quatraro, 2017).  
 
The regional branching approach has therefore provided a fertile ground to 
understand the theoretical underpinnings of S3, and to elaborate the argument at the 
regional level (Boschma and Gianelle, 2014; Balland et al., 2018). In this context, the 
interplay between regional idiosyncratic features and the ability of local agents in 
engaging in successful learning processes is considered key to drive regional 
diversification patterns towards the valorization of the local competences 
accumulated over time (McCann and Ortega-Argiles, 2015). A wide of body of 
empirical literature has eventually shown that related diversification is positively 
associated with regional economic performances. 
 
The extension of the resource-based view of the firm to the regional domain allows 
to better appreciating the impact of relatedness in the elaboration of regional 
diversification strategies (Lawson, 1999; Quatraro, 2009; Neffke et al., 2018). Smart 
specialization involves therefore the capacity to leverage the existing regional 
resource base to support the development of new economic and technological 
activities. Regional resources are in turn highly idiosyncratic, non-substitutable, 
inimitable, rare and valuable. Competences emerging out of localized learning are 
mostly specific to sectors and technological domains, and therefore hardly useful for 
activities that are loosely related to existing bundle of regional activities.  For this 
reason, the dynamics of emergence of new activities in regional contexts is featured 
by path-dependence leading to related diversification patterns. 
 
The constraining role of regional economic and technological history is a distinctive 
feature of the regional branching approach, which provides a valuable background to 
the discourse on S3. Similarly, the concept of technological congruence blends 
economic and technological aspects, suggesting that regions able to leverage 
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technologies that are able to identify and take advantage of the sources of pecuniary 
externalities in local factor markets, in terms of relative scarcity, are more likely to 
be featured by better economic performances.  
 
The concept of relatedness gains new meaning, concerning the fitness degree 
between the factor intensity required by the new technologies and the one actually 
observed in the regional economies. In the next section we will present the main 
ingredients of the technological congruence theory, and discuss more explicitly its 
relationship with the related diversification theory and the bearing on the S3 
approach. 
 

2.2 Technological congruence 
 
As stressed in sub-section 2.1, related diversification and regional branching gained 
momentum as a theory explaining regional diversification dynamics, and its 
relationship with regional economic performances. The technological congruence 
theory complements and integrates the analysis of related diversification as it focuses 
on the role of factor markets while the latter concentrates its attention on the 
industrial composition of local economic systems. The analysis of technological 
congruence allows to identifying the effects of the matching between the local 
endowments of production factors and the direction of technological change on 
regional output and productivity growth. This sub-section provides the basic tools to 
appreciate the effects of technological congruence on productivity dynamics and 
articulate our working hypothesis that the direction of technological change is a 
powerful factor that should become the target and the tool of a S3 policy mix able to 
support the introduction of biased innovations better able to match the pecuniary 
externalities that stem from the factor endowments specific to each region. 
 
The analysis of the relationship between the direction of technological change and 
the relative abundance of factors in local markets enables to implement the analysis 
of the related diversification and hence to contribute the endeavor shared by a large 
literature to articulate solid theoretical foundations for the S3.  
 
Technological congruence is an important factor in economic growth both at the firm 
and the aggregate level. From a theoretical viewpoint, technological congruence 
elaborates upon and extends the directed technological change framework. Within 
this strand of analysis, not only the rate but also the direction of technological change 
is no longer regarded as an exogenous. On the contrary, economic forces play a 
central role in determining its characteristics including its direction that is far from 
being neutral (Acemoglu, 2002; 2003; 2010). 
 
Increasing empirical evidence has recently documented the strong directionality of 
technological change. The new evidence has shown that the output elasticity of 
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factors is far from stable at the aggregate level as it varies considerably across time 
and countries, as well as at the disaggregate level across firms, regions and industries 
(Krueger, 1999; Hall and Jones, 1999; Caselli and Coleman, 2006; Caselli and Feyer, 
2007; Comin and Hobijn, 2004).  
 
Technological congruence is the result of the endogenous introduction of biased 
technological change induced by the changing conditions of factor markets. It is the 
result of a process of augmented factor substitution where technological change is 
biased towards the reduction of the intensity of the production factor that are 
relatively more expensive and its substitution with a more intensive use of the factors 
that are locally more abundant and hence cheaper (Antonelli, 2003, 2012, 2016). 
 
Technological congruence is the result of a meta-substitution process where technical 
substitution is augmented by the introduction of technological change directed at 
increasing the output elasticity of the factors that can yield pecuniary externalities 
because they are locally cheaper. Technological congruence enables higher levels of 
dynamic efficiency as it has direct and clear effects on the levels of TFP. In the 
Appendix, we provide the analytical demonstration that technological congruence, 
defined by the matching between the slope of both the isoquant and the isocost, has 
direct effects on output levels: an increase of output elasticity of the cheaper factor 
induces an increase of productivity growth. 
 
The actual effects of technological change when it is directional, as opposed to 
neutral, depend upon the specific conditions of local factor markets. The effects of 
directed technological change are not universal but contingent upon the specific local 
conditions to which they apply. The introduction of a new technology characterized 
by strong shift and non-neutral effects can vary across countries and regions that have 
heterogeneous factor markets. A new technology can be superior in a region and 
actually inferior in another. A new capital-intensive technology with a strong shift 
effect can be superior to existing ones in a capital abundant region, but actually 
inferior in a labor abundant one.  
 
From the viewpoint of the analysis of adoption and diffusion of technological 
innovations the notion of technological congruence, and the understanding of its 
effects on TFP, implements the idea that firms choose the most appropriate 
technology from a library of technologies -- this idea underpins the meta-frontier 
literature, where the output shortfall associated with choosing the wrong technology 
is referred to as a meta-technology ratio. The notion of technological congruence 
implies that new technologies can no longer be ranked along an objective order. As a 
consequence, delayed adoption can be rational. Agents located in a labor abundant 
country may have no interest to adopting a capital-intensive technology although its 
shift effects are relevant (Comin and Hobijn, 2004).  
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From the viewpoint of the introduction of new technologies, the notion of 
technological congruence, and the understanding of its effects on TFP, contributes 
another aspect of the economics of innovation and new technologies. Here there is 
not a library of technologies, but, on the opposite a binding set of relative factor 
markets conditions that induce the direction of technological change. Technological 
congruence provides solid foundations to understanding the variety of directions of 
technological change across countries and regions with differentiated factor markets. 
Regions characterized by capital abundance have a clear incentive to generate new 
technological knowledge and introduce technological innovations that make an 
intensive use of the factor locally abundant. This aspect has been little appreciated by 
the ‘appropriate technology’ literature. Yet it contributes to understanding the 
persistence of differentiated technological paths of regions. The notion of 
technological congruence helps understanding: (i) why the direction of technological 
change across regions is inherently heterogeneous; (ii) the pervasive role of pecuniary 
externalities as a source of incentives to guide the technological bias.  
 
As suggested by Aghion et al. (2011), the directed technological change approach is 
useful for EU policy as it induces structural changes in the economy, i.e. it describes 
an innovation process, and it selects specific policies for the regional heterogeneity of 
endowment, i.e. the policies that are tailored to exploiting the regional endowment of 
factors. The focus on the matching between direction of technological change and the 
levels of pecuniary externalities specific to each region provides the tools to 
implement the smart specialization concept, since it shows how the introduction of 
directed technological change enables to take advantage of the structural 
heterogeneity of regional factor markets that has been shaped by the local history of 
specialization and related diversification. 
 
The new proposed framework based on technological congruence and that based on 
related diversification and regional branching contribute two different and yet 
complementary layers of analysis. The regional branching framework uses network 
analysis at the industrial level to establish proximity relations amongst economic 
activities. Vice versa, the technological congruence framework uses macroeconomics 
analysis at the regional level. Successful industrial branching takes place when it 
impinges upon high levels of technological congruence and the search for 
technological congruence enables to identify the industrial branching that offers the 
best matching between pecuniary externalities in local factor markets and the 
direction of technological change.   

3 Hypothesis 
 
The hypothesis of this work is that the levels of technological congruence are the 
cause of the bias components of TFP. The more intensively a system (and an agent) is 
able to use the production factor that is locally cheaper and the larger the levels of 
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TFP. The larger is the difference between the slope of the isocost and the slope of the 
isoquant and the larger are the levels of technological congruence, the larger will be 
the levels of TFP. 
 
Some scholars identify a set of indicators enables to disentangle the bias and the shift 
(neutral) effects of the introduction of technological change (Antonelli and Quatraro, 
2010; 2013; 2014; Zuleta, 2012; Sturgill and Zuleta, 2017; Feder, 2018a; 2018b). To 
identify the bias effects of the introduction of biased technological change and to 
distinguish them from the shift effects of technological change, we use the procedure 
of Antonelli (2016).  
 
This tool enables to test the hypotheses about the effects of the introduction of biased 
technological changes that affect the levels of technological congruence: (i) the 
increase of the directional component of TFP will be larger the larger is the bias of 
technological change in terms of the increase of the output elasticity of the production 
factor that has become less expensive; (ii) the larger is the reduction (increase) of the 
slope of the isocost and the larger is the increase (decrease) of the reciprocal of slope 
of the isoquant, and the larger will be the rate of increase of TFP. 
 
Our hypotheses can be synthetized and formalized as it follows. Let 𝐴𝐴𝐵𝐵 be the effect 
of the directed technological on the TFP; 𝑟𝑟 and 𝑤𝑤 the capital rental and the labor cost, 
respectively; and 𝛼𝛼 and 𝛽𝛽 the output elasticity of capital and labor, respectively. 
Formally we want to test if the following functions (called 𝑓𝑓 and 𝑔𝑔) are decreasing:2 
 
(1) 𝐴𝐴𝐵𝐵 = 𝑓𝑓 �𝑤𝑤

𝑟𝑟
− 𝛼𝛼

𝛽𝛽
� with 𝑓𝑓’ < 0; 

 
(2) 𝑑𝑑𝐴𝐴𝐵𝐵

𝐴𝐴𝐵𝐵
= 𝑔𝑔 �𝑑𝑑(𝑤𝑤/𝑟𝑟)

(𝑤𝑤/𝑟𝑟)
− 𝑑𝑑(𝛼𝛼/𝛽𝛽)

(𝛼𝛼/𝛽𝛽)
� with 𝑔𝑔’ < 0. 

 
The empirical validation of the hypotheses makes an important contribution to 
implement the theoretical foundations of a new selective and yet inclusive European 
policy framework based upon S3 as it shows that regions should elaborate a selective 
support to technological change favoring the introduction of innovations that make 
the most intensive use of the production factor that are locally more abundant. 
 
The following sections describe the data and the methodology implemented to test 
our hypothesis on the European evidence, at the regional level. 
 
 
 

                                                 
2 See the Appendix for a more elaborated demonstration. 
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4 Data and Methodology 
 
The main working hypothesis of this paper is grounded on the effects of 
technological congruence on TFP, proposing that it is in particular the cause of its 
directional component. 
 
In order to provide an empirical assessment, we implement an econometric analysis 
articulated at the regional level. The data are drawn from the Cambridge 
Econometrics’ European Regional Database (ERD), which is a highly disaggregated 
dataset across both sectoral and sub-regional dimensions. Eurostat's REGIO database 
is the primary source of data for the ERD but is supplemented with data obtained 
from AMECO, a dataset provided by the European Commission's Directorate General 
Economic and Financial Affairs (DG EcFin). 
 
The variables included in the database allow for the calculation of the different 
productivity indexes, by implementing a standard growth accounting approach based 
on the assumption that the regional economy can be described by an aggregate Cobb-
Douglas production function (Solow, 1957; Zuleta, 2008; Antonelli at al., 2017).  
 
In particular, we used the regional GDP as an output measure. Output elasticities are 
calculated moving from labor output elasticity, which is obtained as the share of labor 
income in total production: 
 
𝛽𝛽𝑖𝑖,𝑡𝑡 = 𝑤𝑤𝑖𝑖,𝑡𝑡𝐿𝐿𝑖𝑖,𝑡𝑡

𝑌𝑌𝑖𝑖,𝑡𝑡
 .  

 
The ERD provides data on Compensation of Employees, which can be used to this 
purpose. By assuming constant returns to scale, we derive the output elasticity of 
capital: 
 
𝛼𝛼𝑖𝑖,𝑡𝑡 = 1 − 𝛽𝛽𝑖𝑖,𝑡𝑡 . 
 
To finalize the calculations, we also used data on regional Employment and on Gross 
Fixed Capital Formation. 
 
For all the variables but employment, the ERD provides deflated data taking the 2005 
as base year. Table 1 shows the geographical coverage of the dataset. 
 

>>> INSERT TABLE 1 ABOUT HERE <<< 
 
Based on these data, we implemented the empirical exercise on an unbalanced sample 
of 278 regions spread over the 28 European countries. The 77% of the regions are 
observed over the whole-time span (32 years), while the remaining 23% is observed 
starting 1990 (1991 for 6 German regions), i.e. over 22 years. 
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The panel data nature of our dataset calls for the implementation of appropriate 
econometric estimators. In particular, we estimate the impact of the mismatch 
between factors’ relative cost and output elasticity on the bias component of 
productivity, by using the fixed effect estimator. The structural model takes therefore 
the following form: 
 
(3) 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖,𝑡𝑡 + ∑ 𝛾𝛾𝑘𝑘,𝑖𝑖,𝑡𝑡𝑧𝑧𝑘𝑘,𝑖𝑖,𝑡𝑡

𝐾𝐾
𝑘𝑘=1 + ∑ 𝑑𝑑𝑡𝑡𝑇𝑇

𝑡𝑡=1 + ∑ 𝜑𝜑𝑖𝑖𝑁𝑁
𝑖𝑖=1 + 𝜀𝜀𝑖𝑖,𝑡𝑡 . 

 
where 𝑦𝑦𝑖𝑖,𝑡𝑡 is the dependent variable, while 𝑥𝑥𝑖𝑖,𝑡𝑡 is the focal regressor. According to 
equations (1) and (2): 
 

𝑦𝑦𝑖𝑖,𝑡𝑡 ≡ �
𝐴𝐴𝐵𝐵
𝑑𝑑𝐴𝐴𝐵𝐵
𝐴𝐴𝐵𝐵

 ;   𝑥𝑥𝑖𝑖,𝑡𝑡 ≡ �

𝑤𝑤
𝑟𝑟 −

𝛼𝛼
𝛽𝛽

𝑑𝑑(𝑤𝑤/𝑟𝑟)
(𝑤𝑤/𝑟𝑟)

− 𝑑𝑑(𝛼𝛼/𝛽𝛽)
(𝛼𝛼/𝛽𝛽)

 . 

 
The econometric specification also includes a set of 𝑘𝑘 control variables 𝑧𝑧𝑖𝑖,𝑡𝑡, for 𝑘𝑘 =
{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚_𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎}, time dummies and region-specific effects. 
 
Table 2 provides a summary of variables definitions, along with the main descriptive 
statistics. 
 

>>> INSERT TABLE 2 ABOUT HERE <<< 

5 Econometric results 
 

5.1 Testing for a panel unit root  
 
The test of the basic hypothesis of this paper rests on the econometric estimation of 
the effects of a mismatch between relative factors’ cost and output elasticity on the 
directional component of TFP. Since the dataset involves European regions observed 
over a long-time window, there can be problems related to the presence of a unit root 
in the variables. 
 
Actually, unit roots can affect regression results giving rise to spurious results. To 
minimize this risk, we first examine whether the variables in equation (3) exhibit a 
unit root. We perform a panel unit root tests proposed by Im et al. (2003) (IPS) and a 
Fisher-type test based upon the Phillips-Perron (PP) statistics (Phillips and Perron, 
1988). Other tests are available, like the one implemented by Breitung (2000) or the 
one elaborated by Levin et al. (2002), but they are not suited to test unit root in 
unbalanced panels. The joint interpretation of the PP and the IPS tests should allow 
us to safely derive a conclusive result on the presence of unit roots. 
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>>> INSERT TABLE 3 ABOUT HERE <<< 
 
Table 3 summarizes the results of the panel unit root tests. The tests include a 
constant term and, in the case of growth rates of the dependent variable and of the 
focal regressor, a time trend. The results suggest that with the only exception of 
population (𝑃𝑃), for the others variables we can reject the null hypothesis of a unit 
root, and therefore we can proceed with our estimations by assuming stationarity, as 
𝑃𝑃 is a control variable entering only a few models. 

5.2 Determinants of directed technological change 
 
Table 4 shows the Spearman correlation coefficients amongst the variables used in 
the empirical analysis, while Table 5 reports the results of the econometric 
estimations carried out on the levels of biased technological change. The first column 
reports a very baseline version of the model, including the current difference between 
relative costs and the ratio between output elasticities of factors as an explanatory 
variable, plus time and region-specific fixed effects. 
 
The coefficient of our focal regressor is negative and significant, suggesting that as 
𝑥𝑥𝑖𝑖,𝑡𝑡 decreases, i.e. as 𝑤𝑤𝑖𝑖,𝑡𝑡/𝑟𝑟𝑖𝑖,𝑡𝑡 gets smaller than 𝛼𝛼𝑖𝑖,𝑡𝑡/𝛽𝛽𝑖𝑖,𝑡𝑡, the biased component of TFP 
becomes larger. This is due to the fact that the difference between the two 
components of 𝑥𝑥𝑖𝑖,𝑡𝑡 is smaller the larger the increase of 𝛽𝛽𝑖𝑖,𝑡𝑡 (𝛼𝛼𝑖𝑖,𝑡𝑡) following a decrease 
in 𝑤𝑤𝑖𝑖,𝑡𝑡 (𝑟𝑟𝑖𝑖,𝑡𝑡). Therefore, we observe that the function 𝑓𝑓 in equation (1) decreases, i.e. 
𝑓𝑓’ < 0.  
 

>>> INSERT TABLES 4 AND 5 ABOUT HERE <<< 
 
Column (2) of Table 4 shows instead the results of the estimations obtained by 
considering the lagged value of our focal dependent variable, i.e. 𝑥𝑥𝑖𝑖,𝑡𝑡−1. As for the 
previous model, time and region-specific fixed effects are also included. The 
coefficient on the focal regressor is once again negative and significant, consistently 
with the previous estimation and supporting the robustness of the result.  
 
Columns (3) and (4) alternate again regression with current and lagged level of 𝑥𝑥 
respectively, but also controlling for the regional share of manufacturing employment 
and population levels. The coefficient of 𝑚𝑚𝑚𝑚𝑚𝑚_𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑡𝑡−1 is positive and significant, 
while that on population (𝑃𝑃) appears to be negative and significant. While the effect 
of this latter variable is to be interpreted cautiously, the result may suggest that 
smaller regions are not fully able to shape the direction of technological efforts, as 
they are more likely to be adopters or importers of new technologies, while larger 
regions command an adequate level of resources and competences to impress upon 
the direction of innovation activities. 
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When we move to the focal regressor, the coefficient is still negative and significant, 
implying that when new technologies involve the increase of the output elasticity of 
the less expensive factor, i.e. when x is small, the biased component is large. 
 
So far, we have estimated the former version of the model based on the levels of the 
dependent variable and the focal regressor. It would also be interesting to look at the 
dynamic version of the relationship, i.e. to investigate the impact of the rate of change 
of 𝑥𝑥 on the rate of change of the biased component of TFP. The result of these 
estimations is reported in Table 6. 
 

>>> INSERT TABLE 6 ABOUT HERE <<< 
 
Columns (1) and (2) report the results of estimations including the actual and the 
lagged rate of change of x, respectively. Consistently with the expectations and the 
previous results the coefficient is negative and significant. The bias component 
decreases when there is a mismatch between relative costs and output elasticities of 
factors. In columns (3) and (4) we introduce the control variables, the signs of which 
are still in line with the previous estimations, although the coefficient of the lagged 
level of 𝑃𝑃 now is not significant. The sign and significance of coefficient of the focal 
regressor is instead very persistent. 
 
We finally perform four more regressions in columns (5) to (8) that include the level 
of x, both current and lagged, instead of its rate of change. In these last estimations 
the coefficient of 𝑃𝑃 is again statistically significant. Across the different 
specifications the coefficient of the focal regressor is persistently negative and 
significant, suggesting that evidently the results are robust to different specifications. 
 
The results of our empirical analysis confirm the strong and effective results in terms 
of TFP of the matching between the direction of technological change as accounted 
by the output elasticity of the two basic factors and their relative cost in the local 
factor markets.  More detailed work based upon a sales production function, 
including, next to capital and labor, the relevant intermediary factors would make it 
possible to show the role of pecuniary externalities. The implementation of an 
extended frame of the technological congruence approach would, in fact, enable to 
identify the positive effects of the introduction of technological change directed at 
increasing the output elasticity of the intermediary factors that for institutional, 
historic and structural are characterized by cost levels that are below average –
equilibrium- ones.  

6 Conclusions 
 
The S3 approach has attracted considerable interest by policy makers as an 
innovative framework able to match the selective support of regional and research 
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policy with the bottom up identification of the activities that are more likely to 
contribute the growth of output and productivity at the regional level. S3 enables to 
pick the local winners reducing the risks and shortcomings of centralized policy 
interventions. The original articulation of the S3 approach missed a solid theoretical 
background. The analysis of the regional dynamics of related diversification and 
industrial branching has considerably enriched the economic foundations of the S3 
approach. This paper has provided and articulated a complementary level of analysis 
with the notion of technological congruence showing the powerful effects on TFP of 
the matching between the direction of technological change and the characteristics of 
local factor markets. The evidence of the European regions confirms the direct effects 
on the levels and the rates of increase of TFP of the levels and the rates of change of 
technological congruence. Building on these bases, the paper makes a contribution 
both to the S3 and to innovation policy. 
 
The analysis of the technological congruence articulated by this paper and the strong 
empirical evidence contributes to articulate and deepen the theoretical foundations of 
the S3 that aims at directing a large array of public policies, ranging from research 
and innovation policy including regional and industrial policies to support the new 
activities that are closer to the structure of the endowments of each region. The 
identification of the effects of technological congruence and of its roots in the 
induced technological change and technological congruence approach provides the 
S3 with a twin set of tools: pecuniary externalities and directed technological change.  
 
Innovation policy has paid far more attention to fostering the rate of technological 
change than to guiding its direction. Technological change is far from neutral and the 
selection of its direction has important effects on the growth of output and 
productivity when it is able to identify and to match the sources of pecuniary 
externalities that characterize the local factor markets. Pecuniary externalities are in 
turn endogenous to the system as they are – to a large extent- the by-product of the 
local history of industrial specialization and related diversification. The selective 
support to a direction of technological change that is able to increase the use of the 
inputs that are locally cheaper can become an important policy tool that blends 
regional and innovation policies. 
 
This set enables policy makers to implement their strategies by means of the 
identification of the regional factor markets that are characterized by relative 
abundance. The analysis of technological congruence enables to call attention on the 
relevance of pecuniary externalities as a mechanism that contributes to stir the 
introduction of directed technological changes. Policy makers at the regional level 
can rely upon of the relative costs in the wide range of intermediary factor markets as 
a reliable device that enables to stir and yet select the direction of technological 
change.   
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According to the results of the theoretical and empirical analysis carried on by this 
paper, S3 can generalized, implemented and empowered not only by the support to 
the analysis of mechanisms of related diversification and industrial branching at the 
regional level, but also by means of the systematic search of the sources of pecuniary 
externalities and the selective support to the introduction and adoption of new 
technologies whose mix of factors is able to take advantage of the relative abundance 
of intermediary factors augmenting the matching between their relative cost in the 
factor markets and their output elasticity in the production process. 
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Table 1 - Data availability by time and regions 

Country/Regions Years available All regions available excluding 
Belgium (BE) 1980-2011 BE10, BE100, BE310, BEZ, BEZZ and 

BEZZZ 
Bulgaria (BG) 1990-2011 BGZ, BGZZ and BGZZZ 
Czech Republic (CZ) 1990-2011 CZ0, CZ010, CZ020, CZ080, CZZ, 

CZZZ and CZZZZ 
Denmark (DK) 1980-2011 DK0, DK050, DKZ, DKZZ, DKZZZ 
Germany (DE) 
Except (DE3, DE4, DE8, DED, 
DEE and DEG) 

1980-2011 DE50, DE60, DE600, DEC0, DEF0, 
DEZ, DEZZ AND DEZZZ 

DE3, DE4, DE8, DED, DEE and 
DEG 

1991-2011 DE30, DE300, DE80, DEE0, DEG0 

Estonia (EE) 1990-2011 EE0, EE00, EEZ, EEZZ and EEZZZ 
Greece (GR) 1980-2011 GR30, GR300, GRZ, GRZZ and 

GRZZZ 
Spain (ES) 1980-2011 ES120, ES130, ES220, ES230, ES30, 

ES300, ES620, ES630, ES640, ES70, 
ESZ, ESZZ and ESZZZ 

France (FR) 1980-2011 FR10, FR30, FR910, FR920, FR930, 
FR940, FRZ, FRZZ and FRZZZ 

Ireland (IE) 1980-2011 IE0, IEZ, IEZZ and IEZZZ 
Italy (IT) 1980-2011 ITD10, ITD20, ITZ, ITZZ and ITZZZ 
Cyprus (CY) 1990-2011 CY0, CY00, CY000, CYZ, CYZZ and 

CYZZZ 
Latvia (LV) 1990-2011 LV0, LV00, LVZ, LVZZ and LVZZZ 
Lithuania (LT) 1990-2011 LT0, LT00, LTZ, LTZZ and LTZZZ 
Luxembourg (LU) 1980-2011 LU0, LU00, LU000, LUZ, LUZZ and 

LUZZZ 
Hungary (HU) 1990-2011 HU10, HUZ, HUZZ and HUZZZ 
Malta (MT) 1990-2011 MT0, MT00, MTZ, MTZZ and MTZZZ 
Netherlands (NL) except 3NL23 1980-2011 NL230, NL310, NLZ, NLZZ and 

NLZZZ 
NL 23 1986-2011  
Austria (AT) 1980-2011 AT130, ATZ, ATZZ and ATZZZ 
Poland (PT) 1990-2011 PLZ, PLZZ and PLZZZ 
Portugal (PT) 1980-2011 PT150, PT20, PT200, PT30, PT300, 

PTZ, PTZZ and PTZZZ 
Romania (RO) 1990-2011 ROZ, ROZZ and ROZZZ 
Slovenia (SI) 1990-2011 SI0, SIZ, SIZZ and SIZZZ 
Slovakia (SK) 1990-2011 SK0, SK010, SKZ, SKZZ and SKZZZ 
Finland (FI) 1980-2011 FI20, FI200, FIZ, FIZZ and FIZZZ 
Sweden (SE) 1980-2011 SE110, SEZ, SEZZ and SEZZZ 
United Kingdom (UK) 1980-2011 UKF30, UKK30, UKM50, UKN0, 

UKZ, UKZZ and UKZZZ 
Norway (NO) 1980-2011 NO0 
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Table 2 – Variables definition and descriptive statistics 

Variable Definition N Mean Min Max Sd Skewness Kurtosis 
𝒚𝒚 Biased 

component of 
productivity 

8171 11,836 -14,341 177,486 15,064 3,175 22,447 

𝒅𝒅(𝒚𝒚)/𝒚𝒚 Rate of 
change of the 
biased 
component 

8171 1,031 -73,972 182,357 9,502 7,690 132,307 

𝒙𝒙 (𝑤𝑤/𝑟𝑟) − (𝛼𝛼/𝛽𝛽) 8171 0,255 -3,468 63,931 2,776 9,461 137,973 
𝒅𝒅(𝒙𝒙)/𝒙𝒙 𝑑𝑑(𝑤𝑤/𝑟𝑟)/(𝑤𝑤/𝑟𝑟)

− 𝑑𝑑(𝛼𝛼/𝛽𝛽)/(𝛼𝛼/𝛽𝛽) 
8171 8,348 -4,512 99,912 6,142 2,193 24,336 

𝑴𝑴𝑴𝑴𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 Log of 
employment 
share in 
manufacturing 

8171 -1,741 -4,116 -0,786 0,487 -1,073 4,708 

𝑷𝑷 Log of 
Population 
levels 

8171 7,130 3,215 9,382 0,872 -0,741 4,589 

 
 
Table 3 – Unit root tests 

 IPS statistics PP statistics 
𝒚𝒚 -4.2403*** 8.8170*** 

𝒅𝒅(𝒚𝒚)/𝒚𝒚 -14.9431*** 6.0082*** 
𝒙𝒙 -9.2763*** 16.9540*** 

𝒅𝒅(𝒙𝒙)/𝒙𝒙 -7.3335*** 4.0366*** 
𝑴𝑴𝑴𝑴𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 -6.4469***  3.4675*** 

𝑷𝑷 12.4169 -0.5422 
Asymptotically standard normal distributed test statistics. Starred statistics are significant at 1%. Automatic selection 
of lags based on AIC criteria for the IPS statistics. 3 lags included for the calculation of the PP statistics. 
 
 
Table 4 – Correlation matrix 

 𝒚𝒚 𝒅𝒅(𝒚𝒚)/𝒚𝒚 𝒙𝒙 𝒅𝒅(𝒙𝒙)/𝒙𝒙 𝑴𝑴𝑴𝑴𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑷𝑷 
𝒚𝒚 1      

𝒅𝒅(𝒚𝒚)/𝒚𝒚 0,3373* 1     
𝒙𝒙 -0,2720* -0,3715* 1    

𝒅𝒅(𝒙𝒙)/𝒙𝒙 0,1641* 0,1952* -0,0904* 1   
𝑴𝑴𝑴𝑴𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 -0,3279* 0,0057 -0,0921* -0,1634*  1  

𝑷𝑷 -0,7588* -0,1069* -0,1698* -0,0154   0,2296* 1 
Starred coefficient is significant at 5%. 
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Table 5 – Econometric results (I) 

 (1) (2) (3) (4) 
𝑥𝑥 -0.6817***  -0.6531***  
 (0.0173)  (0.0175)  
     
xt-1  -0.6100***  -0.5757*** 
  (0.0175)  (0.0173) 
     
Man_sharet-1   1.4896*** 1.2351*** 
   (0.4237) (0.4310) 
     
Pt-1   -20.9968*** -21.8090*** 
   (1.3951) (1.4173) 
     
_cons 17.2527*** 14.9979*** 171.3672*** 175.9390*** 
 (0.3885) (0.3989) (10.0044) (10.1671) 
N 8171 7895 7895 7895 
R2 0.190 0.161 0.214 0.188 
adj. R2 0.159 0.127 0.182 0.155 
AIC 50479.8856 48462.4887 47953.0692 48211.5933 
BIC 50711.1611 48685.6562 48190.1847 48448.7088 

Dependent variable: 𝑦𝑦 = 𝐴𝐴𝐵𝐵 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 
Table 6 – Econometric results (II) 

 (1) (2) (3) (4) (5) (6) (7) (8) 
d(x)/x -0.1245***  -0.1101***      
 (0.0244)  (0.0227)      
         
[d(x)/x]t-1  -0.1070***  -0.1048***     
  (0.0227)  (0.0228)     
         
x     -0.1052***  -0.0980***  
     (0.0124)  (0.0119)  
         
xt-1      -0.0950***  -0.0926*** 
      (0.0115)  (0.0116) 
         
Man_sharet-1   0.7570*** 0.7514***   0.7993*** 0.7536*** 
   (0.2890) (0.2893)   (0.2874) (0.2877) 
         
Pt-1   -1.7084* -1.6934*   -0.4373 -0.4999 
   (0.9446) (0.9448)   (0.9464) (0.9462) 
         
_cons 0.8797*** 0.4582* 15.3388** 15.2132** 1.5868*** 1.3214*** 7.1085 7.4117 
 (0.2675) (0.2408) (6.7833) (6.7843) (0.2782) (0.2621) (6.7871) (6.7872) 
N 8171 7895 7895 7895 8171 7895 7895 7895 
R2 0.013 0.013 0.014 0.014 0.019 0.019 0.020 0.020 
adj. R2 -0.025 -0.027 -0.026 -0.026 -0.019 -0.021 -0.020 -0.020 
AIC 45069.3974 41882.0192 41872.5877 41875.1288 45021.7610 41834.1745 41826.4222 41830.6219 
BIC 45300.6728 42105.1868 42109.7032 42112.2442 45253.0364 42057.3420 42063.5377 42067.7374 
Dependent variable: 𝑑𝑑(𝑦𝑦)/𝑦𝑦 = 𝑑𝑑(𝐴𝐴𝐵𝐵)/𝐴𝐴𝐵𝐵 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Appendix - Technological congruence and output levels 
 
The aim of this appendix is to provide the analytical demonstration that technological 
congruence, defined by the matching between the slope of the isoquant and the slope 
of the isocost, has direct effects on output levels. The larger is the difference between 
the two slopes and the larger are the output levels.  
 
Our approach differs from the well-known concept of cost allocative efficiency 
(CAE) (i.e., choosing factor quantities so that marginal rates of technical 
transformation are equal to relative factor costs) because we assume explicitly that 
the production function, and specifically the output elasticity of the factors, can 
change because of the introduction of biased technological change directed at 
increasing the output elasticity of the factor that is locally cheaper (Hjalmarsson et 
al., 1996).  
 
The standard Cobb-Douglas production function seems a suitable and effective 
starting point. The Cobb-Douglas specification, in fact, accommodates explicitly, 
with 𝛼𝛼 and 𝛽𝛽, the output elasticity of the production factors and enables to analyze 
their changes made possible by the introduction of biased technological innovations. 
The standard Cobb-Douglas takes the following format: 
 
  (𝐴𝐴1) 𝑌𝑌(𝑡𝑡) = 𝐴𝐴𝐾𝐾𝛼𝛼𝐿𝐿𝛽𝛽. 
 
where 𝐾𝐾 denotes the amount of capital and 𝐿𝐿 the amount of labor. 
 
The cost equation is:   
 
(A2) 𝐶𝐶 = 𝑟𝑟𝑟𝑟 + 𝑤𝑤𝑤𝑤 . 
 
Firms select the traditional equilibrium mix of factors according to the slope of the 
isocosts given by ratio of labor costs (𝑤𝑤) and capital rental costs (𝑟𝑟) and the slope of 
isoquants. The equilibrium condition is: 
 
(𝐴𝐴3) 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕
= 𝑤𝑤

𝑟𝑟
→ 𝛽𝛽

𝛼𝛼
 𝐾𝐾

∗

𝐿𝐿∗
= 𝑤𝑤

𝑟𝑟
 . 

 
From (A3), in equilibrium it must be: 
 
(A4) 𝐿𝐿∗ = 𝑟𝑟𝑟𝑟

𝑤𝑤𝑤𝑤
𝐾𝐾∗ . 

 
The optimal mix of productive factors that entails total costs equal to 𝐶𝐶 can be 
obtained as the solution of the following system: 
 



23 
 

(A5) � 𝐿𝐿∗ = 𝑟𝑟𝑟𝑟
𝑤𝑤𝑤𝑤

𝐾𝐾∗

𝐶𝐶 = 𝑟𝑟𝐾𝐾∗ + 𝑤𝑤𝐿𝐿∗
 . 

 
The solution of (A5) gives: 
 

(A6) �
𝐿𝐿∗ = 𝐶𝐶𝐶𝐶

𝑤𝑤

𝐾𝐾∗ = 𝐶𝐶𝐶𝐶
𝑟𝑟

 . 

 
Substituting (A6) in (A1), we can express the level of output that can be achieved at 
cost 𝐶𝐶: 
 

(A7) 𝑌𝑌∗/𝐶𝐶 = �𝛼𝛼
𝑟𝑟
�
𝛼𝛼
�𝛽𝛽
𝑤𝑤
�
𝛽𝛽

. 
 
To show the effect of 𝛼𝛼 on the level of productivity let us derive (8) with respect to 𝛼𝛼: 
 
(A8) 𝑑𝑑(𝑌𝑌∗/𝐶𝐶)

𝑑𝑑𝑑𝑑
= 𝑌𝑌∗

𝐶𝐶
𝑙𝑙𝑙𝑙 �𝛼𝛼𝛼𝛼

𝑟𝑟𝑟𝑟
� = 𝑌𝑌∗

𝐶𝐶
𝑙𝑙𝑙𝑙 �𝐾𝐾

∗

𝐿𝐿∗
�. 

 
From the previous expression, we have that: 
 
(𝐴𝐴9) 𝑑𝑑(𝑌𝑌∗/𝐶𝐶)

𝑑𝑑𝑑𝑑
> 0 ⟺𝐾𝐾∗ > 𝐿𝐿∗. 

 
Condition (A9) is the necessary and sufficient condition for 𝑑𝑑(𝑌𝑌∗/𝐶𝐶)/𝑑𝑑𝛼𝛼 > 0. If 
𝑤𝑤 > 𝑟𝑟 and consequently 𝐾𝐾∗  > 𝐿𝐿∗, an increase of 𝛼𝛼 induces an increase of 𝑌𝑌, given 
the production cost. 
 
Three qualifications are useful here. First, our mathematical presentation takes into 
account only production processes that can be approximated by means of a Cobb-
Douglas production function. In other functional forms of the production function, 
like the translog, output elasticities are functions of the data, so they vary across 
observations, but the coefficients of the function are constant (the same applies to 
linear and quadratic functions). Yet the Cobb-Douglas production function is widely 
used as the general case and especially in growth accounting. Second, it is indeed 
difficult to imagine a firm where it is meaningful to consider differential changes in 
technologies. At the aggregate level because of the myriad of specific product and 
production processes, our assumptions are far less unrealistic. Consistently the 
standard analysis of induced technological change at the aggregate levels builds on 
these assumptions (Ruttan, 1997; 2001; Acemoglu, 2002; 2003; 2010). Third, our 
mathematical presentation includes extreme cases that at the firm level may seem 
unrealistic. It is clear that the equilibrium condition (A3) is only true if we rule out 
boundary solutions. Their inclusion in the analysis would not affect the results. 
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We have shown that output levels are influenced by the introduction of biased 
technological change. This result is important as standard growth accounting is able 
to identify only the effects of the introduction of neutral technological changes that 
produce a shift in the map of isoquants, does not accommodate the effects of the 
introduction of biased technological change and is not able to distinguish the two 
effects. Figure A1 helps to make our result better clear. 
 

>>> INSERT FIGURE A1 ABOUT HERE <<< 
 
Figure 1 represents the two extreme positive cases: 1) with the full line that exhibits 
the case of perfect matching when the isoquant is steep (𝛽𝛽 > 𝛼𝛼), hence the 
technology in place is capital intensive, with an output elasticity of capital larger than 
the output elasticity of labor; and the isocost is flat (𝑤𝑤 < 𝑟𝑟) hence wages are smaller 
than capital user costs, and 2) the dotted line that exhibits the case of a steep isocost 
(𝑤𝑤 < 𝑟𝑟 ), hence capital user costs are lower than wages, and a flat isoquant (𝛽𝛽 < 𝛼𝛼 ), 
with a labor intensive technology where the output elasticity of labor is larger than 
the output elasticity of capital. In both cases the technology in place exhibits the 
maximum levels of technological congruence and output levels are largest. In all the 
cases comprised between these two extremes, output levels are lower. Hence the 
introduction of biased technological changes can increase output levels. In economic 
terms this amounts to saying that 𝑌𝑌 is larger when either a capital-intensive 
technology is at work in a capital abundant factors market, or a labor-intensive 
technology is at work in a labor abundant factor market. The introduction of biased 
technological change affects the levels of output and hence of total factor 
productivity. We can term these effects as bias effects. Bias effects can be both 
positive or negative. They are positive when technological change increases the 
levels of technological congruence and negative when technological change reduces 
the levels of technological congruence. 
 
The analysis implemented so far relies upon a value-added production function that 
includes only the basic factors: capital and labor. It can be generalized to a sales 
production function that includes, next to capital and labor, relevant intermediary 
factors. The latter is most appropriate to explore the actual scope of application of 
smart specialization strategies as it enables to identify the specific factor markets that 
make possible to access not only the basic factors available at a cheaper cost, but also 
the intermediary factors characterized by relevant pecuniary externalities. The S3 can 
consequently reframed as the set of innovation policies that are able to stir the 
introduction of biased technological changes directed at making the most intensive 
use of the factors that enjoy pecuniary externalities in the regional factor markets      
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Figure A1 - The matching between the slope of isocosts and isoquants 
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