Campus Luigi Einaudi, Lungo Dora Siena 100/A, 10153 Torino (Italy)

i
3=
i<
s
()
aw
e
e
v
(o)
on
(@]
%
(V5]
Q
=
(V5]
=
(g7}
)
(V]
a
(o
(g7}
[75]
9
(@]
(o
(@]
@)
=
[
o
)
(o
£
e
Y
(g}
(@l
(D]
A

www.est.unito.it

UNIVERSITA
DEGLI STUDI
DI TORINO

Dipartimento

Economia e Statistica
Cognetti de Martiis

Working Paper Series

08/16

HOW THE BLACK SWAN DAMAGES THE HARVEST:
STATISTICAL MODELLING OF EXTREME EVENTS IN
WEATHER AND CROP PRODUCTION IN AFRICA,
ASIA, AND LATIN AMERICA

NADINE MARMAI, MARIA FRANCO VILLORIA
and MARCO GUERZONI

*
hl—l E K Bureau of Research on Innovation,
Complexity and Knowledge

The Department of Economics and Statistics “Cognetti de Martiis” publishes research papers
authored by members and guests of the Department and of its research centers. ISSN: 2039-4004



LEI&BRICK Working Paper 05/2016
www.brick.carloalberto.org



Working Paper e Department of Economics & Statistics "Cognetti de Martiis", University of Turin

How the Black Swan damages the harvest: statistical
modelling of extreme events in weather and crop
production in Africa, Asia, and Latin America

NADINE MARMAT 13 *MaRria FRANCO VILLORIA !, MaRcO GUERZONT 12

! DESPINA - Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Italy
2 CRIOS, Bocconi University, Milan, Italy
3 Collegio Carlo Alberto, Italy

Abstract

Climate change constitutes a rising challenge to the agricultural base of developing countries. Most of
the literature has focused on the impact of changes in the means of weather variables on mean changes
in production and has found very little impact of weather upon agricultural production. Instead, a more
recent stream of literature showed that we can assess the impact of weather on production by looking at
extreme weather events. Based on this evidence, we surmise that there is a missing link in the literature
consisting of relating the extreme events in weather with extreme losses in crop production. Indeed, extreme
events are of the greatest interest for scholars and policy makers only when they carry extraordinary
negative effects. We build on this idea and for the first time, we adapt a conditional dependence model
for multivariate extreme values to understand the impact of extreme weather on agricultural production.
Specifically, we look at the probability that an extreme event drastically reduces the harvest of any of the
major crops. This analysis, which is run on data for six different crops and four different weather variables
in a vast array of countries in Africa, Asia and Latin America, shows that extremes in weather and yield
losses of major staples are associated events.

1. INTRODUCTION

crops in different regions of Asia, Africa, and Latin America. We provide two key contri-

butions to the literature. First, we adopt a conditional dependence model for multivariate
extreme values developed by Heffernan and Tawn (2004). Although this modelling approach
already has some applications in environmental or food chemicals studies, see e.g. (Keef et al,,
2009; Paulo et al., 2006), there has been no previous attempt to use the model in the context of
extremes in weather and crop production losses. Secondly, we provide evidence that these extreme
events are associated and we are able to estimate their dependence structure.

The relation between climate and agriculture is a highly debated issue. By focusing on the
agricultural sector of countries in Latin America, Africa and/or Asia, numerous studies have
found historic evidence and/or have predicted the future effects of weather variables on basic
food production (Jones and Thornton, 2003; Lobell and Field, 2007; Kristensen et al., 2011; Lobell
et al., 2011a; Rowhani et al., 2011; Welch et al., 2010; Knox et al., 2012). For example, Lobell et al.
(2011b) found both positive and negative impacts of temperature and precipitation trends for
different major crops at the global level. Specifically, trends in temperature affect mainly yield,
whereas precipitation influences inter-annual changes in crop production.

A stream of research, using linear regression models, focuses on the mean effects of weather
on average crop production (Kucharik and Serbin, 2008; Tao et al., 2008; Lobell et al., 2011b). The
results of, e.g., Schlenker and Lobell (2010) reveal that time constant country-fixed effects and

THis paper investigates the effect of temperature and precipitation extremes on major staple

*Corresponding author: Department of Economics and Statistics, University of Turin. Address: Lungo Dora Siena 1004,
10123, Turin, Italy. Email: nadine.marmai@unito.it


mailto:nadine.marmai@unito.it

Working Paper e Department of Economics & Statistics "Cognetti de Martiis", University of Turin

time trends explain most of the variation in yields of different agricultural products. Regional
characteristics such as soil quality or crop management and country-specific trends, e.g., tech-
nological progress in crop production or warming, are the most crucial factors, whereas annual
mean changes in weather provide only a minor explanation of the overall variation. This approach
suggests that the relation between weather and production is non-linear and difficult to model
with linear regression analysis. Burke et al. (2015) discuss the importance of non-linear responses
to temperature in agricultural and non-agricultural production for both rich and poor countries.
Production peaks at an annual average temperature of 13 degrees Celsius and decreases substan-
tially at higher temperatures. However, the average temperature is higher in poor countries, which
leads to stronger effects of temperature on production in these countries. Projections suggest that
further warming will reduce productivity and income in countries with high average temperatures.

The assessment of weather impacts on crop production includes not only the focus on changes
in the mean values of weather variables but also on the probability, frequency, and severity of
extreme events, which substantially influence yields (Wheeler et al., 2000; Moriondo et al., 2011;
Lesk et al., 2016). Several empirical works, such as Ciais et al. (2005) in European countries,
Schlenker and Roberts (2006) in the United States, Semenov (2007) in the UK, and van der Velde
et al. (2012) in France show a substantial impact of extreme weather events on the yields for major
crops. Moreover, changes in the frequency of extreme weather events also determine the quality
of the crop harvest (Porter and Semenov, 2005). This evidence deserves worth a deeper analysis,
since both the frequency and the magnitude of extreme weather events such as heat-waves are
likely to rise due to warming climate conditions (Semenov, 2007). Looking at countries globally,
Deryng et al. (2014) find extreme heat events to be unfavourable for major producing regions and
lower income countries and, according to Semenov (2007), extreme high and low temperature
can seriously harm crops or even cause plant death, whereas intensive precipitation can lead to
contamination of ground water and soil erosion. In addition to the direct effects of heat, drought,
and flooding, extreme events indirectly affect crops through pests, changing soil processes and
nutrient dynamics (Rosenzweig et al., 2001). Similarly, Lesk et al. (2016) analyses the damages of
extreme weather disasters on crop production and find that drought and extreme heat significantly
harm national staple crop production worldwide.

Based on these studies, we surmise that the missing piece in the literature consists of relating
the extreme events in weather with substantial losses in production. Indeed, extreme events are
of the greatest interest for scholars and policy makers when they have extraordinary negative
impacts (Taleb, 2010); otherwise the extreme events are irrelevant. In the remainder of the paper,
we model the conditional extreme dependence of extraordinary yields losses and four different
weather variables for six different staple crops, separately for different regions in Asia, Africa and
Latin America.

2. Data

This study covers countries in Africa, Asia, and Latin America ranging from low to upper middle
income countries (UN, 2014) and includes annual data observations from 1961 to 2002. The staple
crops of interest are wheat, rice, maize, soybeans, barley, and sorghum which constitute the six
most commonly cultivated crops worldwide (Lobell and Field, 2007). Country-level data on yields
are available from the FAO website!.

We make use of Lobell et al. (2011c)’s precipitation and temperature data; the authors con-
structed weather data based both on Sacks et al. (2010)’s crop calendar to derive the growing
season of each crop and on the agricultural maps of Monfreda et al. (2008) to identify the growing

Thttp://faostat3.fao.org
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regions of each crop. Lobell et al. (2011c) extracted growing season- and region-specific weather
data from the CRU TS 2.1 historical climate data set (Mitchell and Jones, 2005) and created national
precipitation and temperature aggregates for each year. Different growing regions and different
growing seasons among countries result in different precipitation and temperature data by crop
and by country. Table 1 gives an overview of the variables.

The initial sample consists of 42 yearly observations for each country and each variable of
analysis. We omit year-country pairs when data are missing for one of the variables. Because 42
observations constitute a small sample to conduct an analysis of extreme values, we pool countries
into regions based on the UN Statistics Division composition of geographical regions 2. Table 2
summarizes the geographical areas, which consist of countries geographically related but still
not identical in terms of economic and weather conditions. To account for this heterogeneity
within each pool of countries, we standardize the production and weather data independently for
each country, subtracting the country-specific mean and dividing by the country-specific standard
deviation. This standardization ensures comparability and avoids missing extremes for some
countries when pooling data.

Table 1: Overview of variables

Variable ‘ Description

Yield Total production divided by area (hg/ha)

Prec Total growing season precipitation in millimeters

tMin Average minimum daily growing season temperature in degree Celsius
tMax Average maximum daily growing season temperature in degree Celsius

Figure 1 shows scatter plots of the standardized yields (Yield), precipitation (Prec), maximum
temperature (tMax) and minimum temperature (tMin), using maize data in Eastern Africa as a
representative example of the data. Figure 1 shows that a regression analysis is not a convenient
option because there are no grounds to assume a clear positive or clear negative dependence of
the yield and any of the weather variables. Instead, we model the extremes, that is for instance,
the set of observations in the bottom right corner of Figure 1a.

Figure 1: Annual standardized yield and precipitation (1), maximum temperature (2), and minimum temperature (3), using maize
data in Eastern Africa (1961-2002)

We define extreme events in precipitation, temperature, and yield as the values of the corre-

2 nttp://unstats.un.org/unsd/methods/mé9/mé9regin.htm
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Table 2: Geographical regions

Region ‘ Countries

South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador,
Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela

Central America & Caribbean Belize, Costa Rica, Cuba, Dominican Republic, El Salvador,

Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua,
Panama, Trinidad and Tobago

Western Africa Benin, Burkina Faso, The Gambia, Ghana, Guinea, Ivory
Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal,
Sierra Leone, Togo

Eastern Africa Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya,
Madagascar, Malawi, Mozambique, Rwanda, Somalia, Su-
dan, Uganda, United Republic of Tanzania, Zambia, Zim-

babwe

Middle & Southern Africa Angola, Botswana, Cameroon, Central African Republic,
Chad, Congo, Gabon, Lesotho, Namibia, South Africa,
Swaziland

South & South-Eastern Asia & | Bangladesh, Brunei, Bhutan, Cambodia, Indonesia, India,

Melanesia Fiji, Laos, Malaysia, Myanmar (Burma), New Caledonia,

Papua New Guinea, Philippines, Solomon Islands, Thai-
land, Vanuatu, Vietham

sponding variable above (below) a threshold value, so that the observations subject to the analysis
are located in the upper (lower) tail of the distribution (Coles et al., 2001). We are mostly interested
in the effect that extremely high or low temperatures and high or low precipitations have on the
probability of observing severe yield losses.

3. METHODS

Let X = (Xj,...,X,) be a vector variable with unknown distribution function F(x), and marginal
distribution functions Fy,, withi =1,...,d. The idea is to model the joint tail of F (x) and, more
specifically, the conditional distribution of X_;|X; > x when x is large, where X_; denotes the
vector X excluding the i component. In this framework, we follow Heffernan and Tawn (2004),
who proposed a semi-parametric model ﬁxi for the marginal distributions based on the generalized
Pareto distribution (GPD),

ﬁx' _ {1 - {1 - ﬁxi(uxi)}{l + gi(x - uxi)/,Bi}_T_l/gi X > Uy,
! F‘ X; (x ) X S uxi
where (;,¢;) are the scale and shape parameters of a GPD for the exceedances over the threshold
uy; and ﬁxi is the empirical distribution of X;.
Following Keef et al. (2013), we use the estimated distributions Fy, to transform X component-
wise to follow Laplace marginal distributions:

 Jlog {2Fx,(X)} for X; < F'(0.5)

o {—ZIOg {21 - Fx,(X3)]}  for X; > F1(05). @
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The aim is to model the distribution of Y_;|Y; = y for y large. For that purpose, univariate
extreme value theory is extended to a multivariate context. Assume that there exist normalizing
functions a;(x), bj;(x): R — R41 / V fixed z € R and any sequence of y; values such that
y; — oo (i.e., high enough):

limy, oo Y_i < a;(yi) + bji(yi)z)il Vi = vi] = Gyi(z);)- (2)

Denote by G; the i marginal distribution of Gji, a non-degenerate distribution function with
lim; ,0{Gji(z) }=1 Vi. The method assumes that the limiting distribution holds V y; > uy, for a
suitable high threshold uy,. When Y; = y;, with y; > uy,, the (standardized) random variable Z; is
defined as:

Y —a(vy
Z\i _ lb |'I(yl) (3)
\i(yz)
and the limiting distribution of Z it
limy, o P(Z); < zji|Yi = yi) = Gji(z))- (4)

Under this assumption, conditionally on Y; > uy,, as uy, — oo, the variables Y; — uy,(> 0) and
Z); are independent in the limit and their limiting marginal distributions are exponential and
Gji(z};), respectively (Keef et al., 2013).

The extremal dependence behaviour is characterized by a;;(y), b‘i(y) and Gj;; hence estimates
of the three are needed to derive the conditional distribution. To do so, Heffernan and Tawn (2004)
propose a semi-parametric model. The parametric part involves estimating a);(y) and b);(y) using
the regression model:

Yoo = ap(y) + bi()Z); = apy + 412 ()

Yi with

the restrictions (a;, b;) € [-1, 1)1 x (—00,1)%"1. Further joint constraints on the parameters
have been imposed by Keef et al. (2013) to avoid problems of inconsistent inferences with respect
to the marginal distributions and parameter identification. Positive and negative dependence are
defined by a;;, the component of a; linked to Y; and large Y;, being 0 < a;; <1and —1 <a;; <0
respectively (Keef et al., 2013). Assuming that (a|i,b‘l-) are known, Gj; can be estimated non-
parametrically using the empirical (or kernel smoothed) distribution of replicates of the random
variable Z it

Specifically, a;;(y) and bj;(y) are expressed in terms of y as a);(y) = a);y and b;;(y) =y

. Y i—a(y)
Zy=——7F—
bii(yi)
for Y; = y; > uy, . Pseudo-samples can then be generated using the fitted model to estimate the

conditional probability of interest. Confidence intervals can be obtained using bootstrap methods,
see Heffernan and Tawn (2004) for computational details.

4. EMPIRICAL ANALYSIS

In the case of Prec, we consider both extreme high and low precipitation values. Because Heffernan
and Tawn (2004) model the upper tail of the distribution, for extreme low precipitation, we
consider the reflection of the variable Prec, defined as PrecRefl. The same procedure applies to
Yield because we are interested in yield losses and we therefore consider the reflection YieldRefl.
For each crop, we define four two-dimensional vectors X = (X7, X;) with unknown distribution
function F(x), where X; is always YieldRefl of the specific crop and X is one of the four weather
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variables. We thus model the extreme values in a bivariate context and run a separate analysis
for each pair of crop and weather variables. To illustrate the procedure of fitting the dependence
model, we report results of the two variables YieldRefl and Prec using maize data of Eastern Africa
from 1961 to 2002 3

We first fit a generalized Pareto distribution separately for each variable and then transform X
component-wise following equation (1) to obtain identical Laplace marginal distributions. The
fitting of the GPD requires an appropriate selection of the threshold above which the GPD model
is valid. For this reason, linearity of the mean residual life plots has to be ensured, which is already
the case for very low thresholds of Prec and YieldRefl for maize data in Eastern Africa. However,
probability, quantile and return level plots suggest that the estimated distribution function is a
reasonable estimate of the theoretical function only above the threshold of the 80  percentile
(Coles et al., 2001), which we then choose as the threshold for Prec and YieldRefl.

Based on these marginal variables with identical Laplace distributions, we describe the depen-
dence structure of the variables. We explore the behaviour of the variable YieldRefl conditional
on extreme values of the variable Prec. We choose the threshold uy, over which the limiting
distribution holds by examining the threshold stability of the estimated parameters a); and b;

of the dependence model (5) using the 50" to 90" quantiles of the conditioning variable Prec as
potential thresholds. The 90" quantile was found to be adequate, leading to parameter estimates
a;; = 0.355 and Bj‘j = —0.394. Imposing the ordering constraints to the values of the parameters as
explained in Section 3, parameter estimates can be sensitive to the initial value of the optimization
procedure for the estimation (Southworth et al., 2013). However, constrained dependence param-
eter estimates are located in the maximum of the profile likelihood surface, as shown in Figure
2. With 4;; = 0.355, the variables YieldRefl and Prec exhibit positive extremal dependence (Keef
et al., 2013). Using maize data from Eastern Africa, we see that the form of dependence between
YieldRefl and the weather variables varies. In contrast to YieldRefl and Prec, the pair YieldRefl and
PrecRefl shows an extremal negative dependence with an 4;; = —0.6265. The results of the other
regions and for the other crops show that the dependence structure does not only change for
different conditioning variables but also for different crops and regions. The uncertainty of the
parameter estimates was evaluated by means of bootstrapping, see Heffernan and Tawn (2004) for
details.

Finally, plotting Z i against Y; for values of Y; over the threshold chosen to fit the model, we
conclude that the standardized variable and the conditioning variable are independent. Moreover,
the fitted quantiles of the conditional distribution and the observations on the original scale match
indicating that the model fits well.

4.1. EXTRAPOLATION

The semiparametric model fitted in the previous section is used to simulate from the joint
distribution of (YieldRefI, Prec) conditional on Prec > qup,ec, where quip,e is the 91° to 99,99
quantile of the conditioning variable Prec. We simulate 1000 observations, which are then used to
calculate the conditional probabilities P(YieldRefl > quyjeiarefi|Prec > quprec), where quiyjerarefi
is always set as the 90" quantile of the variable YieldRefl. Thus, we are interested in the change
of the probability of high losses in basic food production given rising extremes in precipitation.
The uncertainty of each point estimate is assessed by creating 95 % confidence intervals of the
conditional probabilities based on 100 bootstrap samples.

3Results for the set of specifications with different marginal weather variables and for different crops or regions are
available on request. The analysis was conducted using the R packages texmex (Southworth, 2013), evd (Stephenson, 2015),
ggplot2 (Wickham, 2015) and rworldmap (?).



Working Paper e Department of Economics & Statistics "Cognetti de Martiis", University of Turin

Profile likelihood

0.4

0.2

0.0

-0.2 1
o

-0.4 -92

-0.6 1

-0.8 1

-1.0 T T T T I -96
0.20 0.25 0.30 0.35 0.40 0.45 0.50

a

Figure 2: Constrained dependence parameter estimates a;; (a) and B]-‘,- (b) of the conditional distribution of (YieldRefl|Prec)

conditional on Prec > quipyec, With qupr being the 91° to 99,99t quantile of the conditioning variable Prec, correspond to the
maximum of the profile likelihood surface using maize data of Eastern Africa.

Figure 3 contains conditional probabilities and the corresponding confidence intervals of high
losses in maize production given a range of thresholds, i.e., from 91% to 99.99" quantiles, for
high precipitation. The plots in Figure 3 cover all considered regions in Asia, Africa and Latin
America. In Middle & Southern Africa, the conditional probabilities or lower confidence interval
bounds are equal to zero, indicating no evidence of an association between extremes in high
precipitation and high yield losses. The probability of high losses in maize production given
increasing extremes in high precipitation increases sharply up to 94 % in Eastern Africa but with
widening confidence intervals. Eastern Africa aside, the probabilities do not change significantly
with increasing thresholds of the conditioning variable Prec among the different regions and are
mostly below 25%. For the opposite case of extremes in low precipitation, Figure 6 (Annex) plots
the conditional probabilities for all regions. South America is affected more than the other regions
because losses in its maize production are more likely to occur given extremely low rainfall. Point
estimates up to 74 % show higher uncertainties, although the confidence intervals do not include
zero. In Central America & Caribbean, the lower confidence interval bounds of the conditional
probabilities are equal to zero. The conditional probabilities for Eastern Africa are approximately
25 % and are less than 25 % for the other regions.

In the case of extremes in minimum temperature, see Figure 7 (Annex), the lower confidence
interval bounds are equal to zero in South America, Western Africa and South & South-Eastern
Asia & Melanesia. The other regions do not show remarkable differences. In Central America &
Caribbean and Eastern Africa, the conditional probabilities slightly increase with higher extremes
in minimum temperature. However, the point estimates are around or below 25 %. The picture
looks similar for the maximum temperature as the conditioning variable, which is shown in Figure
8 (Annex). The conditional probabilities rarely exceed 25 %, and the lower confidence interval
bounds are equal to zero in Western Africa and South & South-Eastern Asia & Melanesia. The
conditional probability plots for barley, rice, sorghum, soy and wheat also reveal a mixed picture
and are shown in the supporting material in the supporting material in appendix. Production
losses due to weather extremes are not equally likely among the regions. Depending on the crop,
the weather extreme and the region, the occurrence of severe production losses is more or less
likely. The results emphasize the complexity of interaction factors.

For each region Figure 4 displays the highest point estimates and 95 % confidence intervals of
the probability of observing a high loss in yield, i.e., YieldRefl above its 90" quantile, conditional



Working Paper e Department of Economics & Statistics "Cognetti de Martiis", University of Turin

Central America & Caribbean Eastern Africa Middle & Southern Africa
100 1 1004 100 1

754 75 A 754

50 4 50 50 1

254 25 25
X
£ — e, e _eeg
=
= oA o4 o T . . e e ew
s T T T T T T T T T T T T
<] 92.5 95.0 97.5 100.0 925 95.0 97.5 100.0 92.5 95.0 97.5 100.0
% South & South—Eastern Asia & Melanesia | South America | Western Africa |
S 100 100 100
B
<
S
(&}

754 75 754

50 1 50 50 1

25 25 254 WNJ

e " e+
e . . . e

0 0+ 0+

T T T T T T T T T T T T
92.5 95.0 97.5 100.0 92.5 95.0 97.5 100.0 92.5 95.0 97.5 100.0
Quantiles of Prec in %

Figure 3: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRef! > qUieldref1| Prec > quiprec),
where quyielarey1 1S always set as the 90th quantile of the variable YieldRefl and qupy is the 91° to 99,99t quantile of the conditioning
variable Prec. Estimation is done using maize data from 1961 to 2002. In Eastern Africa conditional probabilities sharply increase with
widening confidence intervals for high thresholds of the conditioning variable. In Middle & Southern Africa the conditional probabilities
or the lower confidence interval bounds are zero indicating no evidence of an association between extremes in high precipitation and
high yield losses.

on extremes in weather. Weather includes either Prec, PrecRefl, tMin, or tMax. For the sake
of clarity, we denote Prec and PrecRefl as HighPrec and LowPrec respectively to indicate that
precipitation is extremely high, i.e., above its 98! quantile, or that precipitation is extremely low,
i.e., below its 274 quantile. The variables tMin and tMax are both extreme high, i.e., above their
98! quantile.

Figure 4 shows that each of the considered regions is likely to have severe losses in its
production of staple food due to extreme weather events. However, the effect of extreme weather
varies among regions depending on the crop and the type of weather extreme. Sorghum, which
is the main staple in Africa, has the highest risk of severe yield losses for different weather
extremes in the three African regions. Extreme high maximum temperature and low precipitation
are the main weather conditions leading to extraordinary yield losses, which is in line with the
distribution of sorghum in arid regions in Africa or in regions where precipitation is erratic
and characterized by short periods of high precipitation (Taylor, 2003). In Eastern and Western
Africa severe reduction in sorghum yield are given extreme high minimum temperature. High
losses in maize production are due to extreme high minimum temperature in Middle & Southern
Africa and are due to extreme high precipitation in Eastern Africa. Noteworthy because of the
importance of rice, which is a main staple in Western Africa (Maclean et al., 2013), high losses in
rice production are likely to occur with extreme events in high precipitation.

Central America & Caribbean exhibits the highest conditional probabilities due to weather
extremes for rice and maize, whereas South America shows it for barley and soybean which are
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Figure 4: Highest point estimates of the conditional probabilities, i.e. the probabilities of yield losses above the 90" quantile given
minimum temperature, maximum temperature or high precipitation extremes above the 98™ quantile or low precipitation extremes
below the 2™ quantile. If the 95 % confidence interval includes zero, the conditional probabilities are not shown.

among the most important staple crops in the regions. Weather patterns are diverse in Latin
America. Whereas South America experiences rising temperature and changing precipitation
patterns leading to mixed effects on agriculture, an increase in temperature severely damages
agricultural output in Central America. Moreover, even though Central America is marked by a
decline in precipitation, floods remain among the most frequent extreme weather events (Galindo
and De Miguel, 2010). The estimated conditional probabilities suggest that in Central America
& Caribbean maize production reacts mainly to extremes in high precipitation and temperature
and rice production reacts to extreme low precipitation. In South America, barley and soybean
production losses are likely to increase with extremes in temperature and low precipitation
respectively.

In Asia a main staple crop is rice where 90 % of rice production and consumption is concen-
trated (Maclean et al., 2013). The dependency on rice is reflected by the fact that we obtain the
highest conditional probabilities for rice in South & South-Eastern Asia & Melanesia. Losses in
rice production are likely due to extreme high minimum temperature. The finding is in line with
Maclean et al. (2013) who state that higher minimum temperatures become increasingly a major
cause of yield losses of rice in Asia. On the other side, the occurrence of very low rice yields is
likely due to high precipitation. Only in South Asia yield losses of rice due to floods are about 4
million t per year (Maclean et al., 2013). Interestingly, the probability of production losses given
extreme low precipitation is the highest for maize in the tropical region of South & South-Eastern
Asia & Melanesia. The finding is plausible as maize production is predominantly rain-fed in South
and South-Eastern Asia (Wani et al., 2009).

The point estimates of conditional probabilities shown in Figure 4 are at maximum 40 %, which
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Figure 5: Worst-case scenario: the maximum upper bound of the 95 % confidence interval of the conditional probability estimates,
i.e. the probability estimates of yield losses above the 90" quantile given minimum temperature, maximum temperature or high
precipitation extremes above the 98" quantile or low precipitation extremes below the 2" quantile.

is the case for sorghum in Eastern Africa given extreme low precipitation. Overall, the highest
conditional probabilities given different weather extremes are in Eastern and Middle & Southern
Africa as well as in South America. In contrast, the conditional probabilities are less than 30 % for
all types of weather extremes in Central America & Caribbean and South & South-Eastern Asia &
Melanesia. Western Africa shows mixed results, which change depending on the weather extreme.

Summing up the results, we find that, first, maize and sorghum have the highest conditional
probabilities of extreme high losses in crop production given the occurrence of extreme weather
conditions. Second, extreme low precipitation and extreme high maximum temperature are the
defining weather extremes, except for Latin America and Western Africa. In Latin America, the
probabilities do not change significantly among different conditioning variables, and in Western
Africa, the highest conditional probability is due to extreme high precipitation in the case of rice.
Third, losses in staple crop production given extreme weather events are more likely in the African
regions and South America.

Finally, Figure 5 shows the worst-case scenario by displaying the maximum upper bound of
the 95 % confidence interval of the conditional probability estimates, i.e., the probability estimates
of yield losses above the 90" quantile given the minimum temperature, maximum temperature or
high precipitation extremes above the 98/ quantile or low precipitation extremes below the 2"
quantile. The maximum upper bound of the 95 % confidence interval is chosen from all of the
weather variables and crops in a region. Each region has a different worst-case scenario, i.e., a
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different crop and weather variable for which we obtain the maximum upper confidence interval
bound. In Central America & Caribbean, South America, Eastern Africa and Middle & Southern
Africa, extreme high temperature is the condition that leads to the highest production losses.
Whereas in the African regions, the associated crop is sorghum, the associated crop is maize in
Central America & Caribbean and barley in South America. The worst-case scenario for Western
Africa constitutes high losses in rice yields due to extremes in high precipitation. In the Asian
region, extremes in low precipitation is the defining weather variable in the worst-case scenario
and rice is the affected crop. The worst-case scenarios occur with different probability in the
different regions. The probability ranges from around 25 % in Central America & Caribbean and
South & South-Eastern Asia & Melanesia to 56 % in Eastern Africa and South America, whereas
probabilities of approximately 50 % are found in Western and Middle & Southern Africa.

5. CoNCLUSION

Standard approaches for assessing the impact of weather on crops have largely focused on the
mean values. In line with a recent stream of research on extreme weather events, we do not focus
on the mean but on the tails of the distributions. We find systematic evidence that extreme losses
in production of major food staples are likely to occur in times of extreme conditions in weather
and the probability depends on the type of weather extreme, the crop, and the region. The alleged
increase in the number of extreme events should be taken seriously because the potential damage
can be extraordinary. We provide a measure of risk for each region, that is specific to both the
crop and the weather event. This outcome can also be used as a form of resilience of a region and
to help policy makers to intervene and set priorities. In the short run, a country cannot change the
risk of incurring high losses due to weather events. However, the resilience of a country depends
on many factors, such as the adoption of advanced irrigation technology, the diffusion of fertilizer,
and the introduction of new and resistant crops, which can be highly influenced by the policy
makers.

This work leaves some questions unanswered due to data availability. Specifically, the same
type of weather extremes can lead to different crop responses based on the time of the year and
the crop growth stage (van der Velde et al., 2012). The use of growing-season national aggregates
of weather to account for weather extremes instead of using precise weather data is critical because
growing-season aggregates do not to capture inter-annual ups and downs and extremes within
a growing period. The drawback occurs because extreme weather conditions are particularly
harmful in certain stages of plant growth (Porter and Gawith, 1999). In addition, studies that focus
on the occurrence of extreme weather events have to be accompanied by studies that also include
the severity of extremes, such as the length of heatwaves or floods. The main constraint for a large
fraction of countries worldwide is the lack of access to long-term weather data with high time and
spatial resolution (Easterling et al., 2000), which are now available for case studies limited in time
and space. We try to mitigate this problem by looking at aggregates of weather in the growing
season and for different growing regions and we analyse the occurrence of periods of extreme
hot, dry or wet conditions from a long-term perspective. The value of this paper is to provide an
indication of the probability of extreme losses in basic food production due to extreme weather
events in a specific region under historic climate conditions. This analysis provides a perspective
that is complementary to more detailed localized studies focusing on one particular region with
higher time and spatial resolution data.

To conclude, studying weather changes and the impacts on agricultural production remains
a challenging task. To evaluate crop production responses the uncertainty of weather changes
needs to be further addressed. The uncertainty in the evaluation of current and future impacts of
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weather on agricultural production stems from uncertainties that arise in the estimation of crop
responses to changes in average growing season temperature and precipitation (Lobell and Burke,
2008). We believe that the uncertainties also come from the extreme events that are by nature
difficult to model. Given that future climate is likely to be prone to a higher frequency of extreme
weather events, our results contribute to this discussion by providing the probabilities of severe
staple crop production losses conditioned on extremes in temperature and precipitation.
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Figure 6: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quyielare f1|PrecRefl >

qUprecRef1), Where quyielaref1 is always set as the 90" quantile of the variable YieldRefl and qui pyecge 71 s the 91% t0 99,99'" quantile
of the conditioning variable PrecRefl. Estimation is done using maize data from 1961 to 2002. In Central America & Caribbean the
lower confidence interval bounds of conditional probabilities are equal to zero.
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Figure 7: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > JUYieldRefl [tMin > quipgin),
where quyieiaref1 is always set as the 90" quantile of the variable YieldRefl and quipgy, is the 91° to 99,99 quantile of the conditioning
variable tMin. Estimation is done using maize data from 1961 to 2002. In South America, Western Africa and South, South-Eastern,
and Eastern Asia & Melanesia the conditional probabilities or the lower confidence interval bounds are zero indicating no evidence of
an association between extremes in minimum temperature and high yield losses.
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quiMax;) per region i. Estimation done using maize data from 1961 to 2002. In South & South-Eastern Asia & Melanesia the lower
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The supporting material contains the conditional probability plots for different regions and
weather variables. The conditional probability plots are grouped by crop. We show plots for
the conditional probabilities P(YieldRefl > quyjeiares1|Weather > quweather), where qityiergresr is
always set as the 90 % quantile of the dependent variable YieldRefl and quyyeqper is the 91 to
99,99% quantile of the conditioning variable Weather, i.e. Prec, PrecRefl, tMax, or tMin. We are
interested in the change of the probability of high losses in yield, i.e. above the 90 % quantile,
given rising extremes in weather. For some crops and weather variables we do not plot conditional
probabilities as these samples do not contain sufficient observations to evaluate the conditional

probabilities. Table 1 contains the considered countries for each region !.

ICountries are pooled into regions based on the UN Statistics Division composition of geographical regions


mailto:nadine.marmai@unito.it
http://unstats.un.org/unsd/methods/m49/m49regin.htm
http://unstats.un.org/unsd/methods/m49/m49regin.htm
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Table 1: Geographical regions

Region

Countries

South America

Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador,
Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela

Central America & Caribbean

Belize, Costa Rica, Cuba, Dominican Republic, El Salvador,
Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua,
Panama, Trinidad and Tobago

Western Africa

Benin, Burkina Faso, The Gambia, Ghana, Guinea, Ivory
Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal,
Sierra Leone, Togo

Eastern Africa

Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya,
Madagascar, Malawi, Mozambique, Rwanda, Somalia, Su-
dan, Uganda, United Republic of Tanzania, Zambia, Zim-
babwe

Middle & Southern Africa

Angola, Botswana, Cameroon, Central African Republic,
Chad, Congo, Gabon, Lesotho, Namibia, South Africa,
Swaziland

South & South-Eastern Asia &
Melanesia

Bangladesh, Brunei, Bhutan, Cambodia, Indonesia, India,
Fiji, Laos, Malaysia, Myanmar (Burma), New Caledonia,
Papua New Guinea, Philippines, Solomon Islands, Thai-
land, Vanuatu, Vietham
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CONDITIONAL PROBABILITIES RICE
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Figure 1: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRef! > qUyieldref1| Prec > quprec),
where quiyielarey) 1 always set as the 90th quantile of the variable YieldRefl and qupy. is the 91° to 99,99t quantile of the conditioning
variable Prec. Estimation is done using rice data from 1961 to 2002. Note that some conditional probabilities and/or lower confidence
interval bounds are equal to 0.0000. It is especially evident in Central America & Caribbean and Middle & Southern Africa. In
Western Africa conditional probabilities of high yield losses given extreme high precipitation are highest.
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Figure 2: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRef] > quyiedref1 | PrecRefl >
qu meeﬂ), where qutyieldres1 18 always set as the 90th quantile of the variable YieldRefl and qupyecref1 15 the 915t t0 99,99t quantile
of the conditioning variable PrecRefl. Estimation is done using rice data from 1961 to 2002. Some conditional probabilities and/or
lower confidence interval bounds are equal to 0.0000 especially in Eastern Africa.
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Figure 3: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quieldref1 EMin > quipgin),
where quiyieiaref1 s always set as the 90th quantile of the variable YieldRefl and qupyy, is the 915 to 99,99t quantile of the conditioning
variable tMin. Estimation is done using rice data from 1961 to 2002. Note that in all regions, except South & South-Eastern Asia &
Melanesia, most conditional probabilities and/or lower confidence interval bounds are equal to 0.0000.
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Figure 4: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quiyierare f1|tMax > quimay),

where quiyieiaref1 18 always set as the 90" quantile of the variable YieldRefl and quipay is the 91°t to 99,99 quantile of the conditioning
variable tMax. Estimation is done using rice data from 1961 to 2002. In all African regions conditional probabilities and/or lower

confidence interval bounds are equal to 0.0000
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CONDITIONAL PROBABILITIES SORGHUM
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Figure 5: Point estimates and 95 % confidence intervals of conditional probability P(YieldRefl > GUyicldref1| Prec > quprec),
where quiyielarey) 1 always set as the 90th quantile of the variable YieldRefl and qupy. is the 91° to 99,99t quantile of the conditioning
variable Prec. Estimation is done using sorghum data from 1961 to 2002. Except for Eastern Africa, conditional probabilities and/or
lower confidence interval bounds are mostly equal to 0.0000. The conditional probability plot of South & South-Eastern Asia &
Melanesia is not shown as the sample of the region does not contain sufficient observations to evaluate the conditional probabilities.
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Figure 6: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quyieldref1 | PrecRefl >
qUprecRrefl ), Where quiyiegres1 is always set as the 90" quantile of the variable YieldRefl and qUprecrefl 18 the 91t t0 99,99 quantile
of the conditioning variable PrecRefl. Estimation is done using sorghum data from 1961 to 2002. The conditional probability plots of
South America and South & South-Eastern Asia & Melanesia are not shown as the sample of the region does not contain sufficient
observations to evaluate the conditional probabilities. Especially in Eastern Africa but also in Middle & Southern Africa the conditional
probabilities sharply increase (with widening confidence intervals) for high thresholds of the conditioning variable. Note that the
conditional probabilities and/or lower confidence interval bounds are mostly equal to 0.0000 in Central America & Caribbean and
Southern, South-Eastern, and Eastern Asia & Melanesia.
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Figure 7: Point estimates and 95 % confidence intervals of conditional probability P(YieldRef] > qUieldRefl = [tMin > quipin),
where quiyieiaref1 is always set as the 90th quantile of the variable YieldRefl and quy gy, is the 915! to 99,99t quantile of the conditioning
variable tMin. Estimation is done using sorghum data from 1961 to 2002. The conditional probability plots of South America and
South & South-Eastern Asia & Melanesia are not shown as the sample of the region does not contain sufficient observations to evaluate
the conditional probabilities. The conditional probability sharply increases for high thresholds of tMin in Eastern Africa. Note that
some conditional probabilities and/or the lower confidence interval bounds are equal to 0.0000, especially in Central America &
Caribbean and South America.



Working Paper e Department of Economics & Statistics "Cognetti de Martiis", University of Turin

Central America & Caribbean Eastern Africa Middle & Southern Africa
100 1 1004 100 1
754 75 754
50 4 50 50 1
25 25 254
S
£
=2
3 0 0+ 04
s T T T T T T T T T T T T
<] 92.5 95.0 97.5 100.0 925 95.0 97.5 100.0 92.5 95.0 97.5 100.0
% South America Western Africa
5 100 100
B
c
S
(]
751 75
50 4 50
254 25
N ._\/’\‘_’\‘_‘_\ N
T T T T T T T T
92.5 95.0 97.5 100.0 925 95.0 97.! 100.0

. 5
Quantiles of tMax in %

Figure 8: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quiyieiare 1 [tMax > quspiax),
where quiyielaref1 18 always set as the 90t quantile of the variable YieldRefl and quipyqy is the 91° to 99,99t quantile of the conditioning
variable tMax. Estimation is done using sorghum data from 1961 to 2002. Note that there are conditional probabilities and/or the
lower confidence interval bounds equal to 0.0000, which is especially the case in Central America & Caribbean. On the other side,
in all African regions, remarkably in Eastern Africa with tighter confidence intervals than in the other African regions, conditional
probabilities exhibit a steep increase for extreme values of tMax. The conditional probability plot of South & South-Eastern Asia &
Melanesia is not shown as the sample of the region does not contain sufficient observations to evaluate the conditional probabilities.
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Figure 9: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRef! > unieldRefl|PmC > qUprec),
where qutyielaref1 is always set as the 90" quantile of the variable YieldRefl and qupy,. is the 91° to 99,99 quantile of the conditioning
variable Prec. Estimation is done using wheat data from 1961 to 2002. The conditional probability plots of the regions Western
Africa, South & South-Eastern Asia & Melanesia and Central America & Caribbean are not shown as the sample of the region does
not contain sufficient observations to evaluate the conditional probabilities. The conditional probabilities and/or the lower confidence
interval bounds are equal to 0.0000, which is especially the case in Middle & Southern Africa.
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Figure 10: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > GUYieldRefl |PrecRefl >
qu meBﬂ), where quyieldref1 1 always set as the 90th quantile of the variable YieldRefl and qupyecref 15 the 915t t0 99,99t quantile
of the conditioning variable PrecRefl. Estimation is done using wheat data from 1961 to 2002. The conditional probability plots of the
regions Western Africa, South & South-Eastern Asia & Melanesia and Central America & Caribbean are not shown as the sample of
the region does not contain sufficient observations to evaluate the conditional probabilities. The conditional probabilities and/or the
lower confidence interval bounds are equal to 0.0000, which is the case in Middle & Southern Africa, South America and for high
values of the threshold of the conditioning variable PrecRefl in Eastern Africa.
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Figure 11: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > qUyieldref1 | tMin >
quitMin), Where quiyieraref) is always set as the 90" quantile of the variable YieldRefl and quypyy, is the 91° to 99,99 quantile of the
conditioning variable tMin. Estimation is done using wheat data from 1961 to 2002. The conditional probability plots of the regions
Middle & Southern, Western Africa, South & South-Eastern Asia & Melanesia and Central America & Caribbean are not shown as
the sample of the regions does not contain sufficient observations to evaluate the conditional probabilities. In all plotted regions lower
confidence interval bounds and/or conditional probabilities are equal to 0.0000 for most thresholds of the conditioning variable.
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Figure 12: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRef] > qUyicldre st [tMax >

qUtMax ), Where quiyielare ) is always set as the 90" quantile of the variable YieldRefl and qupy,y is the 91° to 99,99 quantile of the
conditioning variable tMax. Estimation is done using wheat data from 1961 to 2002. The conditional probability plots of the regions
Middle & Southern, Western Africa, South & South-Eastern Asia & Melanesia and Central America & Caribbean are not shown as
the sample of the regions does not contain sufficient observations to evaluate the conditional probabilities. In Eastern Africa lower
confidence interval bounds are equal to 0.0000. On the other side, conditional probabilities show a steep increase but with widening
confidence interval for extreme values of tMax in South America.
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Figure 13: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > unieldR(,mPrecRefl >
qupmm,ﬂ), where quyieldref1 15 always set as the 90t quantile of the variable YieldRefl and qupyecref 15 the 91% to 99,99t quantile
of the conditioning variable PrecRefl. Estimation is done using soy data from 1961 to 2002. The conditional probability plots of all
regions, except South America and South & South-Eastern Asia & Melanesia, are not shown as the sample of the regions does not
contain sufficient observations to evaluate the conditional probabilities. Note that in South & South-Eastern Asia & Melanesia lower
bounds of the confidence interval are equal to 0.0000.
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Figure 14: Point estimates and 95 % confidence intervals of conditional probability P(YieldRefl > WYieldRefl|tM'1x > qUiMax),
where quyielgre 1 1S always set as the 90" quantile of the variable YieldRefl and qu;pyay is the 91°* to 99,99 quantile of the conditioning
variable tMax. Estimation is done using soy data from 1961 to 2002. The conditional probability plots of all African regions and
Central America & Caribbean are not shown as the sample of the regions does not contain sufficient observations to evaluate the
conditional probabilities. Note that in South & South-Eastern Asia & Melanesia lower bounds of the confidence interval are equal

to 0.0000. Interestingly, in South America the conditional probability sharply decreases with widening confidence intervals for high
thresholds of the conditioning variable.
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Figure 15: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > quiyiagesi|tMin >
qUipin ), Where GulyieldRef1 15 always set as the 90th quantile of the variable YieldRefl and qupy, is the 91 to 99,99 quantile of the
conditioning variable tMin. Estimation is done using barley data from 1961 to 2002. The conditional probability plots of all African
regions, South & South-Eastern Asia & Melanesia and Central America & Caribbean are not shown as the sample of the regions does
not contain sufficient observations to evaluate conditional probabilities. Conditional probabilities and/or lower confidence interval
bounds are equal to 0.0000 for high thresholds of the conditioning variable for both plotted regions.
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Figure 16: Point estimates and 95 % confidence intervals of the conditional probability P(YieldRefl > qUYieldRefl = 90%|tMax >

qUtMax ), Where quiyioare s i always set as the 90" quantile of the variable YieldRefl and qupyay is the 91° to 99,99 quantile of the
conditioning variable tMax. Estimation is done using barley data from 1961 to 2002. The conditional probability plots are not shown,
except for South America, as the sample of the regions does not contain sufficient observations to evaluate conditional probabilities.
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