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Fractal Attractors and Singular Invariant
Measures in Two-Sector Growth Models with

Random Factor Shares∗

Davide La Torre† Simone Marsiglio‡ Franklin Mendivil§
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Abstract

We analyze a multi-sector growth model subject to random shocks affecting the two
sector-specific production functions twofold: the evolution of both productivity and factor
shares is the result of such exogenous shocks. We determine the optimal dynamics via
Euler-Lagrange equations, and show how these dynamics can be described in terms of
an iterated function system with probability. We also provide conditions that imply
the singularity of the invariant measure associated with the fractal attractor. Numerical
examples show how specific parameter configurations might generate distorted copies of
the Barnsley’s fern attractor.

Keywords: Two-sector Growth Model, Stochastic Factor Shares, Iterated Function Sis-
tems Fractal Attractors, Singular Measures.
JEL Classification: C61, O41

1 Introduction

Macroeconomic models, and in particular economic growth models, have attracted large inter-
est over the last few decades because of their ability to generate complicated dynamics (Boldrin
and Montrucchio, 1986). It is now well known that such models can also give rise to random
dynamics eventually converging to invariant measures supported on fractal sets (Montrucchio
and Privileggi, 1999). A growing number of studies has recently focused on characterizing the
conditions under which this might occur by relying on the iterated function system (IFS) lit-
erature (Hutchinson, 1981; Vrscay, 1991; Barnsley, 1993). Most of the existing works dealing
with economic growth and IFS analyze the traditional discrete time one-sector growth model
with logarithmic utility and Cobb-Douglas production, in either its simplest setup or in slightly
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extended formulations; such a basic model through an appropriate transformation can be con-
verted into a one-dimensional IFS, and it is thus possible to show that its optimal dynamic
path may converge to a singular measure supported on a Cantor set, and also that the invariant
probability may be either singular or absolute continuous according to specific parameter con-
figurations (Montrucchio and Privileggi, 1999; Mitra et al., 2003; Mitra and Privileggi, 2004,
2006, 2009; Marsiglio, 2012; Privileggi and Marsiglio, 2013). Very few are those that instead
consider more sophisticated two-sector growth models giving rise to a two-dimensional IFS; the
analysis in this framework is clearly more complicated but it is still possible to show that the
optimal dynamic path may converge to a singular measure supported on some fractal set, like
the Sierpinski gasket, and to eventually characterize singularity versus absolute continuity of
the invariant probability (La Torre et al., 2011; La Torre et al., 2015).

We wish to contribute to this literature by extending the analysis of two-sector random
growth models and their relation with fractal steady states in order to allow for the random
shock to affect not only the productivity level of the sector-specific production functions (La
Torre et al., 2011, 2015), but also their factor shares. To the best of our knowledge, the
possibility of exogenous shocks on factor shares thus far have been considered only in the one-
sector growth model by Mirman and Zilcha (1975), which has recently been extended to the
case of learning by Mirman et al. (2016). Nonetheless, it is an interesting generalization of
the traditional setup both from the economic and mathematical point of view; indeed, variable
factor shares may describe the change in the structure of economic activities which we have
observed in industrialized economies over the last decades (Nickell et al., 2008; Marsiglio et al.,
2016), and also imply that the optimal economic dynamics may be characterized by an IFS
with variable coefficients which makes the analysis of convergence and invariant probability
properties not trivial at all. In order to look at this in the simplest possible setup we build
on the model discussed in La Torre et al. (2011) in which endogenous growth is ruled out
(see La Torre et al., 2015, for a discussion of how results may differ in a framework with
endogenous growth), and show that through an appropriate log-transformation the optimal
nonlinear dynamic system can be converted into a topologically equivalent linear IFS, although
such a transformation requires us to impose a substantial number of restrictions on the model’s
parameters. We can however show that the system converges to a singular measure supported
on some fractal set, which (because of the imposed restrictions) turns out to be a distorted
copy of Barnley’s fern. We also provide some sufficient conditions under which the associated
self-similar measure may be singular.

The paper proceeds as follows. In Section 2 we briefly summarize some basic results from
the IFS theory and present some novel sufficient conditions (Theorem 1) for testing the singu-
larity of the invariant distribution in a two-dimensional IFS setup. In Section 3 we analyze a
two-sector economic growth model in which random shocks affect both the productivity and the
factor shares of the two sector-specific production functions, and we fully characterize the opti-
mal policies through Euler-Lagrange equations. In Section 4 we introduce a log-transformation
which allows us to reduce the nonlinear IFS associated with the optimal dynamics to a topolog-
ically equivalent linear IFS, which substantially simplifies our analysis but requires to impose
some restrictions on the possible parameter values. We also provide, sufficient conditions for
the attractor of this linear IFS to be a fractal set (the Barnsley’s fern), and we identify sufficient
conditions under which the self-similar measure may turn out to be singular. Section 5 presents
a specific example of attractor and in particular it shows that the parameter restrictions re-
quired by our log-transformation preclude us from generating the original fern, and thus we can
obtain only a distorted copy. Section 6 presents concluding remarks and proposes directions
for future research.
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2 Iterated Function Systems and Fractal Attractors

Hutchinson (1981) and, shortly thereafter, Barnsley (1993) showed how systems of contractive
maps with associated probabilities, referred to as IFS by the latter, can be used to construct
fractal, self-similar sets and measures. More in general, the action of a generalized fractal
transform (GFT) (Kunze et al., 2012) T : X → X on an element u of the complete metric
space (X, d) can be summarized in the following steps. It produces a set of N spatially-
contracted copies of u and then it modifies the values of these copies by means of a suitable
range-mapping. Finally, it recombines them using an appropriate operator in order to get the
element v ∈ X, v = Tu. In all these cases, under appropriate conditions, the fractal transform
T is a contraction and thus Banach’s fixed point theorem guarantees the existence of a unique
fixed point ū = T ū. The inverse problem is a key factor for applications: given a “target”
element v ∈ X, we look for a point-to-point contraction mapping T with fixed point ū such
that d(v, ū) is as small as possible. In practical applications, however, it is difficult to construct
solutions to this problem and we generally rely on the following simple consequence of Banach’s
fixed point theorem, known in the fractal coding literature as the collage theorem, which states
that

d(v, ū) ≤ 1

1− c
d(v, Tv) (1)

(c is the contractivity factor of T ). Instead of trying to minimize the error d(v, ū), we look for
a contraction mapping T that minimizes the collage error d(v, Tv).

2.1 Self-Similar Attractors and Invariant Measures

An N -map iterated function system (IFS) (Hutchinson, 1981; Barnsley, 1993) is a set of N
contraction maps wi : X → X, i.e., for each 1 ≤ i ≤ N , there exists a ci ∈ [0, 1) such that
d(wi(x), wi(y) ≤ cid(x, y) for all x, y ∈ X. Associated with an N -map IFS is a set-valued
mapping w : H(X) → H(X), where H(X) denotes the set of nonempty compact subsets of X:

w(S) =
N
⋃

i=1

wi(S), S ⊂ X, (2)

In Hutchinson (1981) it was proved that

h(w(A),w(B)) ≤ ch(A,B), ∀ A,B ∈ H(X), (3)

where h is the Hausdorff distance between compact sets (Kunze et al., 2012) and c = max1≤i≤N{ci}.
From Banach’s Fixed Point Theorem, there exists a unique fixed point A ∈ H(X), known as
the attractor of the IFS, which satisfies A = w(A). From Eq. (2), the attractor A is self-
similar since it may be expressed as a union of contracted copies of itself. For more details and
examples one can refer to (Barnsley, 1993; Kunze et al., 2012).

Let p = (p1, · · · , pN) denote a set of probabilities associated with the IFS maps w =
(w1, · · · , wN), such that

∑N
i=1 pi = 1. The result is an N -map IFS with probabilities, to be

denoted as (w,p). In what follows, let B(X) the σ-algebra of Borel subsets of X and M(X)
be the set of probability measures on B(X). Associated with an N -map IFS is an operator
M : M(X) → M(X), often referred to as the “Markov operator”. Its action on M(X) is
defined as follows: For any µ ∈ M(X),

(Mµ)(S) =
N
∑

i=1

pi µ ◦ w−1
i (S), S ⊆ X. (4)

3



Here, w−1
i (S) denotes the pre-image of S under wi and ◦ denotes the composition.

We now consider the following Monge-Kantorovich metric on M(X),

dH(µ, ν) = sup
f∈Lip(X)

{
∫

X

fdµ−
∫

X

fdν

}

, µ, ν ∈ M(X)

where Lip(X) = {f : X → R, |f(x) − f(y)| ≤ d(x, y), x, y ∈ X}. In the IFS literature, this
metric is generally referred to as the “Hutchinson” metric. The metric space (M(X), dH) is
complete (Hutchinson, 1981; Barnsley, 1993) if X is compact (this conclusion is also true if
X is complete and the first moment condition is satisfied; Kunze et al., 2012). Moreover, the
Markov operator M defined in Eq. (4) is a contraction mapping on (M(X), dH) (Hutchinson,
1981), i.e.,

dH(Mµ,Mν) ≤ cdH(µ, ν), µ, ν ∈ M(X),

where c was defined earlier, cf. Eq. (3). From Banach’s Theorem, there exists a unique measure
µ̄ ∈ M(X), the so-called invariant measure of theN -map IFS, such thatMµ̄ = µ̄. This relation
may also be viewed as a self-similarity property of µ, i.e., that it may be expressed as a sum of
copies of itself. For any µ0 ∈ M(X), the sequence µn+1 = Mµn converges to the steady state
µ̄ when n → +∞. Furthermore, the trajectory generated by the chaos game xn+1 = wi(xn)
with probability pi is dense in the IFS attractor A (Hutchinson, 1981; Brandt, 1986). Finally,
the support of µ̄ coincides with the IFS attractor A.

2.2 Singularity of The Invariant Measure

In this section we consider the case of affine IFS with probabilities on R
2. In what follows let

wi(x) = Aix+bi, for i = 1, 2, . . . , N , and pi be the associated probabilities. The following result
states a sufficient condition to prove the singularity of the invariant measure of an affine IFS.

Theorem 1 Let (w,p) = {w1, w2, . . . , wN ; p1, p2, ..., pN} be an affine IFS on R
d having maps

wi : R
d → R

d defined by wi(x) = Aix + bi, for i = 1, 2, . . . , N , and let p = (p1, p2, . . . , pN) be
the associated probability weights. If

| det(A1)|p1| det(A2)|p2 · · · | det(AN)|pN < pp11 p
p2
2 · · · ppNN (5)

then the invariant measure µ∗ defined by (w,p) is singular.

Proof. Let αi = | det(Ai)| and θ be such that

αp1
1 α

p2
2 · · ·αpN

N < θ < pp11 p
p2
2 · · · ppNN

and let K be the attractor of the IFS wi. By re-indexing if necessary we assume that α1 ≤
α2 ≤ · · · ≤ αN . Furthermore for convenience we assume that N is even (this is only used in
(6) below). For σ ∈ {1, 2, . . . , N}N, define

σ(n, i) = #{j ≤ n : σj = i}.

Fix k ≥ 0 and consider the set

Sn = {σ ∈ {1, 2, . . . , N}n :

∣

∣

∣

∣

∣

σ(n, i)− npi√
n
√

pi(1− pi)

∣

∣

∣

∣

∣

≤ k, i = 1, 2, . . . , N},
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so that Sn is the set of k-typical sequences of length n. Then from Chebyshev’s inequality we
have

P (Sn) ≥ 1−N/k2

independent of n. Furthermore, by Theorem 1.3.4 in Roman (1992) we have

#Sn ≤ (pp11 p
p2
2 · · · ppNN )−nNC

√
n

for some constant C > 0. For simplicity of notation, define wσ = wσ1
◦ wσ2

◦ · · · ◦ wσn
for any

σ ∈ {1, 2, . . . , N}n. By the definition of Sn for any σ ∈ Sn we have that

L(wσ(K)) = α
σ(n,1)
1 α

σ(n,2)
2 · · ·ασ(n,N)

N L(K)

≤ L(K) (αp1
1 α

p2
2 · · ·αpn

N )n
(

αN

α1

αN−1

α2

· · · αN/2+1

αN/2

)β
√
n

, (6)

where β > 0 is an appropriate constant. Now, let

Jn =
⋃

σ∈Sn

wσ(K) ⊂ K.

Then µ(Jn) = P (Sn) ≥ 1− 3/k2 for all n. Furthermore,

L(Jn) ≤
∑

σ∈Sn

L(wσ(K))

≤ L(K) (#Sn) (α
p1
1 α

p2
2 · · ·αpn

N )n
(

αN

α1

αN−1

α2

· · · αN/2+1

αN/2

)β
√
n

≤ L(K) (pp11 p
p2
2 · · · ppNN )−nNC

√
nθn

(

αN

α1

αN−1

α2

· · · αN/2+1

αN/2

)β
√
n

= L(K)

(

θ

pp11 · · · ppNN

)n

γ
√
n → 0

as n → ∞ since 0 < θ < pp11 · · · ppNN (here γ > 0 is some appropriate constant). Thus µ∗ is
singular with respect to Lebesgue measure.

Example 1 The classical Barnsley’s fern (Barnsley, 1993) is produced by the following affine
IFS:

w1(x) = A1x+ b1 =

[

0 0
0 0.16

]

x+

[

0
0

]

, p1 = 0.01

w2(x) = A2x+ b2 =

[

−0.15 0.28
−0.04 0.24

]

x+

[

0
0.44

]

, p1 = 0.07

w3(x) = A3x+ b3 =

[

0.20 −0.26
0.23 0.22

]

x+

[

0
1.60

]

, p1 = 0.07

w4(x) = A4x+ b4 =

[

0.85 0.04
0.26 0.85

]

x+

[

0
1.60

]

, p1 = 0.85,

whose attractor is plotted in Figure 1 by tracing 50000 random iterations1 according to the
4 probability values considered, pi ∈ {0.01, 0.07, 0.07, 0.85}. In this case it is trivial to apply
condition (5) of Theorem 1 to prove that the invariant measure is singular because det(A1) = 0.

1The Maple 2015 code is available from the authors upon request.
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Figure 1: approximation thorugh 50000 random iterations of the IFS that generates the classical
Barnsley’s fern.

3 Economic Growth and Stochastic Factor Shares

We analyze a multi-sector economic growth model subject to random shocks which affect output
production. Differently from most studies which assume that shocks affect the total factor
productivity (Mitra et al., 2003), we allow for such shocks to affect the factor shares as well, so
that shocks have a twofold role in determining economic conditions. In macroeconomic theory
factor shares are traditionally assumed to be constant, despite empirical evidence suggests that
because of structural changes factor shares tend to be time-varying (Nickell et al., 2008). Very
few studies have thus far analyzed the implications of changes in the factor shares on economic
dynamics, and they have focused on a framework in which such changes occur deterministically2

(Growiec et al., 2015; Marsiglio et al., 2016). We contribute to this branch of literature by
extending the analysis to a framework in which factor shares evolve randomly, in order to
understand what this might imply for macroeconomic dynamics.

For the sake of simplicity, we focus on the standard optimal growth model under uncer-
tainty discussed in La Torre et al. (2011) in which the social planner seeks to maximize the
representative household’s infinite discounted sum of instantaneous utility functions – which
are assumed to be logarithmic – subject to the laws of motion of physical, kt, and human, ht,
capital. At each time t, the planner chooses consumption, ct, and the share of human capital,
ut, to allocate into production of the unique homogeneous consumption good which uses a
Cobb-Douglas technology combining physical and human capital. Education is assumed to be
intensive in human capital, as in Lucas (1988), but the marginal returns of the share of human
capital employed in education are decreasing, in accordance with Rebelo (1991). Specifically,
the final good and the education sectors are affected by exogenous perturbations which take
both a multiplicative form through coefficients zt and ηt respectively, and an exponential form
affecting the factor shares in both production functions; that is, the factor shares in the Cobb-
Douglas functions are random as well, so that output at time t is given by yt = ztk

αt

t (utht)
γt ,

where αt and γt denote the physical and human capital factor shares at time t respectively,

2In Growiec et al. (2015) factor shares are considered endogenous variables, while in Marsiglio et al. (2016)
their change is completely exogenous.
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while human capital at time t is produced according to ht+1 = ηt [(1− ut)ht]
φt , with φt de-

noting the time-t human capital factor share in education. The whole (zt, ηt, αt, γt, φt) random
vector is independent and identically distributed, and can take on m values, i.e., at each time t
(zt, ηt, αt, γt, φt) ∈ {(zi, ηi, αi, γi, φi)}mi=1. We shall assume that (zi, ηi, αi, γi, φi) ∈ R

5
++ and that

0 < αi, γi, φi < 1, plus αi+γi ≤ 1 for all i = 1, . . . ,m. Each vector realization, (zi, ηi, αi, γi, φi),
occurs with (constant) probability pi, with pi ∈ (0, 1), i = 1, . . . ,m, and

∑m
i=1 pi = 1.

The social planner problem can thus be summarized as:

V (k0, h0, z0, η0, α0, γ0, φ0) = max
{ct,ut}

∞
∑

t=0

βt
E0 ln ct (7)

s.t.







kt+1 = ztk
αt

t (utht)
γt − ct

ht+1 = ηt [(1− ut)ht]
φt

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0) are given,

(8)

where E0 denotes expectation at time t = 0, 0 < β < 1 is the discount factor. In presence
of shocks on the exponents of the Cobb-Douglas production functions it becomes difficult to
pursue the usual “guess-and -verify” approach (Bethmann, 2007, 2013; La Torre et al., 2011,
2015) applied to the solution of the Bellman equation, as, already under an i.i.d. assumption
on the exogenous shocks, it is not obvious what the best candidate functional form for the value
function may look like. Hence, we skip the search of the value function altogether and look
directly for the optimal policy by trying to solve the Euler equations. The following Proposition
1 and Theorem 2 provide the basic tools for this procedure.

3.1 Euler-Lagrange Equations and Transversality Condition

Consider the following general reduced-form stochastic intertemporal problem:

V (x0, z0) = sup
{xt}

∞
∑

t=0

βt
E0 [u (xt, xt+1, zt)] (9)

s.t.







xt+1 ∈ Γ (xt, zt) a.e. ∀t ≥ 0,
xt ∈ X ⊆ R

n, zt ∈ Z ⊆ R
s ∀t ≥ 1,

x0 ∈ X, z0 ∈ Z are given,
(10)

where {zt} is an i.i.d. process with realizations in Z ⊆ R
s,3 Γ : X×Z → X is a correspondence

representing the one-period constraint, i.e., it is the set of feasible values for next period’s state
variable xt+1 if the current state is (xt, zt). We assume that the set of feasible plans from (x0, z0),
that is, the set of sequences x = {xt} such that xt+1 ∈ Γ (xt, zt) a.e. ∀t ≥ 0, is nonempty; it
is well known that a sufficient condition is X to be closed and Γ : X × Z → X nonempty
valued, closed and upper semicontinuous. Moreover, according to Proposition 1, p. 22, and
Lemma 1, p. 55, in Hildenbrand (1974), there exist a measurable function h : X×Z → X such
that h (x, z) ∈ Γ (x, z) for all (x, z) ∈ X × Z, which allows to define feasible plans recursively:
xt+1 = h (xt, zt) for all zt ∈ Z and t ≥ 1. Clearly, a plan x = {xt} is random, or contingent,
because it depends on the realization of the stochastic process {zt}; in other words, in general
different sequences {zt} correspond to different sequences {xt}. Indeed, to be precise, we should
write {xt (zt−1)}; we drop the argument zt−1 of xt to simplify notation.4

3Z can be any Borel measurable subset of Rm, not necessarily a finite set.
4Note also that the assumption of {zt} to be an i.i.d. process let xt to depend a.e. only on the last shock

realization, zt−1.
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Denote by G = {(x, y, z) ∈ X ×X × Z : y ∈ Γ (x, z)} the graph of the correspondence
Γ (x, z), and by Gz = {(x, y) ∈ X ×X : y ∈ Γ (x, z)} the z-section of G. We say that a feasible
random plan x = {xt} is interior if (xt, xt+1) ∈ Int (Gzt) a.e. for all t ≥ 0. We will also assume
the following.

A. 1 The time t = 0 expectation E0 [u (xt, xt+1, zt)] is well defined for all t ≥ 1, Int (X) 6= ∅,
and, for each z ∈ Z, the one-period return function u (·, ·, z) is differentiable on Int (X ×X),
with each of the first group of n partial derivatives, uxi

for i = 1, . . . , n, absolutely integrable.

Proposition 1 Under A.1, if a random plan x∗ = {x∗t} is interior and optimal for (9), then
it satisfies the following stochastic Euler-Lagrange equations:

uy
(

x∗t−1, x
∗
t , zt−1

)

+ βEt−1

[

ux
(

x∗t , x
∗
t+1, zt

)]

= 0 a.e. for all t ≥ 1, (11)

where ux (·, ·, z) denotes the vector of partial derivatives of u with respect to the first group of
n variables, uy (·, ·, z) denotes the vector of partial derivatives of u with respect to the second
group of n variables, and Et−1 denotes expectation at time t− 1.

Proof. Let x∗ = {x∗t} be interior and optimal for (9). Fix a time t, a vector v ∈ R
n and

consider the new “perturbation” random path

x̄∗ (τ) =
{

x0, x
∗
1, x

∗
2, . . . , x

∗
t−1, x

∗
t + τv, x∗t+1, . . .

}

,

where τ is a scalar. Note that x̄∗ (0) = x∗. Interiority assumption on x∗ implies that for
|τ | small enough, say |τ | < ε, the plan x̄∗ (τ) is feasible, that is,

(

x∗t−1, x
∗
t + τv

)

∈ Gzt−1
and

(

x∗t + τv, x∗t+1

)

∈ Gzt a.e..
Denote the objective as a function of the whole plan x = {xt} by

U (x, z0) =
∑∞

t=0 β
t
E0 [u (xt, xt+1, zt)]. As x∗ is optimal, U (x∗, z0) ≥ U [x̄∗ (τ) , z0] must hold

for |τ | < ε, which, since the additive perturbation τv affects only the two time-t terms in the
sum, is equivalent to

βt−1
E0

[

u
(

x∗t−1, x
∗
t , zt−1

)]

+ βt
E0

[

u
(

x∗t , x
∗
t+1, zt

)]

≥ βt−1
E0

[

u
(

x∗t−1, x
∗
t + τv, zt−1

)]

+ βt
E0

[

u
(

x∗t + τv, x∗t+1, zt
)]

.

Dropping the common term βt−1 and noting that, by definition of contingent plan under the
assumption that {zt} is an i.i.d. process, x∗t and x∗t + τv become deterministic whenever the
realization zt−1 is observed, the last inequality can be rewritten as

u
(

x∗t−1, x
∗
t , zt−1

)

+ βEt−1

[

u
(

x∗t , x
∗
t+1, zt

)]

≥ u
(

x∗t−1, x
∗
t + τv, zt−1

)

+ βEt−1

[

u
(

x∗t + τv, x∗t+1, zt
)]

a.e. ∀ |τ | < ε,

that is, u
(

x∗t−1, x
∗
t + τv, zt−1

)

+ βEt−1

[

u
(

x∗t + τv, x∗t+1, zt
)]

reaches its (interior) maximum in
τ = 0 and, under differentiability assumption on u (·, ·, z), FOC must hold:

∂

∂τ

{

u
(

x∗t−1, x
∗
t + τv, zt−1

)

+ βEt−1

[

u
(

x∗t + τv, x∗t+1, zt
)]}

∣

∣

∣

∣

τ=0

= 0 a.e.,

which, since the assumption of absolute integrability of the first n partial derivatives, uxi
, of

u (·, ·, z) allows the exchange between the differentiation and the expectation operators, boils
down to

{

uy
(

x∗t−1, x
∗
t , zt−1

)

+ βEt−1

[

ux
(

x∗t , x
∗
t+1, zt

)]}

· v = 0 a.e..

As the last equation holds for all v ∈ R
n and t ≥ 1, we immediately get (11).

Problem (9) is said to be concave if for each z ∈ Z then the z-section Gz of the graph G of
the correspondence Γ (x, z) is convex and the function u (·, ·, z) is concave on it.
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Theorem 2 Under A.1, assume that (9) is concave and a plan {x∗t} exist such that it is
interior and satisfies the stochastic Euler-Lagrange equations (11). If, in addition, X ⊆ R

n
+,

ux (x, y, z) ⊆ R
n
+, and the transversality condition

lim
t→∞

βt
E0

[

ux
(

x∗t , x
∗
t+1, zt

)

· x∗t
]

= 0 (12)

holds, then, {x∗t} is optimal for (9).

Proof. Fix n ≥ 1, let x∗ = {x∗t} be an interior plan that satisfies (11) and let x = {xt} be
a feasible plan from (x0, z0). By concavity and differentiability of u (·, ·, z), for any t ≥ 0

u (xt, xt+1, zt) ≤ u
(

x∗t , x
∗
t+1, zt

)

+ ux
(

x∗t , x
∗
t+1, zt

)

· (xt − x∗t ) + uy
(

x∗t , x
∗
t+1, zt

)

·
(

xt+1 − x∗t+1

)

,

that is,

u
(

x∗t , x
∗
t+1, zt

)

− u (xt, xt+1, zt) ≥ ux
(

x∗t , x
∗
t+1, zt

)

· (x∗t − xt) + uy
(

x∗t , x
∗
t+1, zt

)

·
(

x∗t+1 − xt+1

)

.

Taking expectation (recall that concavity is preserved under integration as established, e.g., in
Lemma 9.5, p. 261 in Stokey and Lucas, 1989), discounting and summing up, we see that the
difference between the n-step return function evaluated at x∗ and x, denoted by H (n), satisfies:

H (n) =
n−1
∑

t=0

βt
E0

[

u
(

x∗t , x
∗
t+1, zt

)]

−
n−1
∑

t=0

βt
E0 [u (xt, xt+1, zt)]

=
n−1
∑

t=0

βt
E0

[

u
(

x∗t , x
∗
t+1, zt

)

− u (xt, xt+1, zt)
]

≥
n−1
∑

t=0

βt
E0

[

ux
(

x∗t , x
∗
t+1, zt

)

· (x∗t − xt) + uy
(

x∗t , x
∗
t+1, zt

)

·
(

x∗t+1 − xt+1

)]

= ux (x
∗
0, x

∗
1, z0) · (x∗0 − x0) + {uy (x∗0, x∗1, z0) + βE0 [ux (x

∗
1, x

∗
2, z1)]} · (x∗1 − x1)

+
n−1
∑

t=2

βt−1
E0

{[

uy
(

x∗t−1, x
∗
t , zt−1

)

+ βEt−1

[

ux
(

x∗t , x
∗
t+1, zt

)]]

· (x∗t − xt)
}

+ βn−1
E0

[

uy
(

x∗n−1, x
∗
n, zn−1

)

· (x∗n − xn)
]

= βn−1
E0

[

uy
(

x∗n−1, x
∗
n, zn−1

)

· (x∗n − xn)
]

,

where the third equality is obtained rearranging terms in the third line and recalling that
E0 (zt) = E0 [Et−1 (zt)] for any t ≥ 1, and the last equality holds because by definition x∗0 = x0
and all the terms in curly brackets vanish according to (11). Applying again (11) to the last
term, the inequality above boils down to

H (n) ≥ βn−1
E0

[

uy
(

x∗n−1, x
∗
n, zn−1

)

· (x∗n − xn)
]

= −βn−1
E0

[

βEn−1ux
(

x∗n, x
∗
n+1, zn

)

· (x∗n − xn)
]

= −βn
E0

[

ux
(

x∗n, x
∗
n+1, zn

)

· x∗n
]

+ βn
E0

[

ux
(

x∗n, x
∗
n+1, zn

)

· xn
]

,

where, since xn ∈ R
n
+ and ux (x, y, z) ⊆ R

n
+, ux

(

x∗n, x
∗
n+1, zn

)

· xn ≥ 0 holds a.e. for all n ≥ 1,
so that the last term turns out to be nonnegative: βn

E0

[

ux
(

x∗n, x
∗
n+1, zn

)

· xn
]

≥ 0. Therefore,
taking the limit as n→ ∞ in both sides and using the transversality condition (12) in the first
term of the last line, we have limn→∞H (n) ≥ 0, and the proof is complete.

For a proof of both Proposition 1 and Theorem 2 under much more general assumptions
(like no restrictions on the random process governing uncertainty and non-differentiability of
the one-period return function) see Privileggi (1995).
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3.2 The Optimal Policy

We now apply Theorem 2 to problem (7) to explicitly compute the optimal policy. First we
need to restate (7) in reduced-form, that is, eliminate controls and keeping only the two state
variables as follows:

V (k0, h0, z0, η0, α0, γ0, φ0) = max
{kt,ht}

∞
∑

t=0

βt
E0 ln

{

ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

− kt+1

}

(13)

s.t.



















0 ≤ kt+1 ≤ ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

0 ≤ ht+1 ≤ ηth
φt

t

k0 > 0, h0 > 0, (z0, η0, α0, γ0, φ0) are given,

(14)

where the control ut has been eliminated thanks to an invertible dynamic constraint for human
capital accumulation in (8). Recall that {(zt, ηt, αt, γt, φt)} is an i.i.d. process with realizations
in the finite set Z = {(zi, ηi, αi, γi, φi)}mi=1 ⊆ R

5
++. The state space is X = R

2
+ and the dynamic

constraint (14) is represented by the correspondence Γ : X × Z → X defined as

Γ (k, h, z, η, α, γ, φ) =
{

(k′, h′) ∈ R
2
+ :

(

h′ ≤ ηhφ
)

∧
(

k′ ≤ zkα
[

h− (h′/η)
1/φ

]γ)}

,

which is clearly nonempty valued, closed, upper semicontinuous and, for each (z, η, α, γ, φ) ∈
R

2
++×[0, 1]3, the (z, η, α, γ, φ)-section of its graph G is convex. Since, for each (zt, ηt, αt, γt, φt) ∈

Z the one-period return function u (kt, ht, kt+1, ht+1, zt, ηt, αt, γt, φt) =

ln
{

ztk
αt

t

[

ht − (ht+1/ηt)
1/φt

]γt
− kt+1

}

is concave in (kt, ht, kt+1, ht+1) on the (convex) set

G(zt,ηt,αt,γt,φt), then problem (13) is concave.
The Euler-Lagrange equations (11) are formed by pairs of partial derivatives, with respect

to kt and ht respectively, set equal to zero. The FOC with respect to kt leads to:

− 1

zt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]γt−1

− kt

+βEt−1















ztαtk
αt−1
t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

− kt+1















= 0. (15)

In order to explicitly solve (15) we shall assume that the optimal plan for physical capital is a

constant share of output in each period, that is, we assume that kt+1 = sztk
αt

t

[

ht − (ht+1/ηt)
1/φt

]γt
,

with 0 < s < 1. Under this assumption, since kt = szt−1k
αt−1

t−1

[

ht−1 − (ht/ηt−1)
1/φt−1

]γt−1

=⇒

zt−1k
αt−1

t−1

[

ht−1 − (ht/ηt−1)
1/φt−1

]γt−1

= kt/s, and by recalling that {(zt, ηt, αt, γt, φt)} is an i.i.d.

process, then (15) boils down to

1

kt
s
− kt

= βEt−1















ztαtk
αt−1
t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

− sztk
αt

t

[

ht − (ht+1/ηt)
1/φt

]γt















=
βEt−1 (αt)

(1− s) kt
=

βE (α)

(1− s) kt
,
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where in the second equality kt has been pulled out of the expectation because, under our

assumption, kt = szt−1k
αt−1

t−1

[

ht−1 − (ht/ηt−1)
1/φt−1

]γt−1

is a deterministic choice taken at time

t− 1, with all the information available at that moment (including the optimal choice for ht),
and in the last equality we used the i.i.d. assumption on the random variable αt, so that
E (α) =

∑m
i=1 piαi is a constant. Then, the Euler equation becomes:

s

(1− s) kt
=

βE (α)

(1− s) kt
,

which yields the (constant) term s = βE (α), so that, given the optimal choice for the human
capital ht+1 (or, equivalently, utht), the (candidate) optimal policy for the physical capital turns
out to be:

kt+1 = βE (α) ztk
αt

t

[

ht −
(

ht+1

ηt

)1/φt

]γt

= βE (α) ztk
αt

t (utht)
γt , (16)

where in the last equality we have recovered the original control formulation for human capital
employed in final production. Hence, the optimal choice for physical capital depends not only
on the realizations of the shocks zt, αt and γt at time t, but on the “average” shock on the
capital factor share α, E (α), as well.

The FOC with respect to ht leads to:

−
zt−1γt−1k

αt−1

t−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]γt−1−1
1

φt−1

(

ht

ηt−1

)
1

φt−1
−1

1
ηt−1

zt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]γt−1

− kt

+ βEt−1



















ztγtk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt−1

ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

− kt+1



















= 0.

By using the optimal policy for physical capital (16) for both terms kt and kt+1, the last equation
becomes

zt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]γt−1−1
γt−1

φt−1

(

ht

ηt−1

)
1

φt−1 ηt−1

ht

1
ηt−1

zt−1k
αt−1

t−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]γt−1

[1− βE (α)]

= βEt−1



















ztγtk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt−1

ztk
αt

t

[

ht −
(

ht+1

ηt

)
1

φt

]γt

[1− βE (α)]



















,

which simplifies into

γt−1

φt−1

(

ht

ηt−1

)
1

φt−1

[

ht−1 −
(

ht

ηt−1

)
1

φt−1

]

ht

= βEt−1















γt
[

ht −
(

ht+1

ηt

)
1

φt

]














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From the original dynamic constraint in (8) we can recover the control variable formulation for

human capital and substitute ht−1 − (ht/ηt−1)
1/φt−1 with ht−1ut−1 and ht − (ht+1/ηt)

1/φt with

htut, while also noting that (ht/ηt−1)
1/φt−1 = (1− ut−1)ht−1, thus obtaining:

γt−1 (1− ut−1)ht−1

φt−1ht−1ut−1ht
= βEt−1

(

γt
htut

)

,

which, again after pulling ht out of the expectation from the RHS as it is a deterministic choice
taken at time t− 1 with all the information available at that moment (while ut, representing a
decision to be taken at time t, is still unknown at time t− 1), and simplifying terms, becomes

γt−1 (1− ut−1)

φt−1ut−1

= βEt−1

(

γt
ut

)

. (17)

Under the i.i.d. assumption we can safely assume that the expectation on the RHS is constant,
say Et−1 (γt/ut) = E (γ/u) ≡ C,5 and then rearrange the last equation as

γt−1

ut−1

= γt−1 + βCφt−1,

which, taking expectations on both terms, turns into

E

(

γt−1

ut−1

)

= E

(γ

u

)

= C = E (γ) + βCE (φ)

yielding the expected ratio

E

(γ

u

)

= C =
E (γ)

1− βE (φ)
.

Using the last expression for Et−1 (γt/ut) in (17) the optimal fraction of human capital to be
employed in the final good production is immediately obtained:

ut =
[1− βE (φ)] γt

[1− βE (φ)] γt + βE (γ)φt

, (18)

which, as expected, besides the “average” shocks on the human capital shares in final good
and human capital production, E (γ) and E (φ) respectively, directly depends on time through
the shock realizations γt and φt. Note that, as by assumption 0 < β, γt, φt,E (γ) ,E (φ) < 1,
0 < ut < 1 as well, as it is supposed to. Hence, the (candidate) optimal policy for the human
capital is given by:

ht+1 = ηt [(1− ut)ht]
φt = ηt

{

βE (γ)φt

[1− βE (φ)] γt + βE (γ)φt

ht

}φt

, (19)

while, after plugging ut as in (18) into (16), the (candidate) optimal policy for the physical
capital is given by:

kt+1 = βE (α) ztk
αt

t (utht)
γt = βE (α) ztk

αt

t

{

[1− βE (φ)] γt
[1− βE (φ)] γt + βE (γ)φt

ht

}γt

, (20)

5Since the realization γt is associated with a unique configuration (zt, ηt, αt, γt, φt) of shocks, it is reasonable
to assume that the optimal choice for ut must be the same whenever such configuration is realized.
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Finally, we must check whether the policies (19) and (20) satisfy the transversality condition
(12). Since

ukt
(

k∗t , h
∗
t , k

∗
t+1, h

∗
t+1, zt, ηt, αt, γt, φt

)

=
βE (α)

[1− βE (α)] k∗t

uht

(

k∗t , h
∗
t , k

∗
t+1, h

∗
t+1, zt, ηt, αt, γt, φt

)

=
βE (γ)

[1− βE (φ)]h∗t
,

(12) in this case is satisfied as the scalar product ux
(

x∗t , x
∗
t+1, zt

)

· x∗t turns out to be constant:

lim
t→∞

βt
E0

[

ux
(

x∗t , x
∗
t+1, zt

)

· x∗t
]

= lim
t→∞

βt
E0

{

βE (α)

[1− βE (α)] k∗t
k∗t +

βE (γ)

[1− βE (φ)]h∗t
h∗t

}

= lim
t→∞

βt+1 [1− βE (φ)]E (α) + [1− βE (α)]E (γ)

[1− βE (α)] [1− βE (φ)]

= 0.

We can thus conclude that (19) and (20) are definitely the optimal policies for human and
physical capital respectively. Note that, not surprisingly, such optimal policies simplify into
those found in La Torre et al. (2011) whenever factor shares are completely deterministic.

4 Log-Transformation

In order to present our following results in the most general form, according to (19) and (20)
we may consider the following nonlinear IFS:

{

kt+1 = ∆tztk
αthγtt

ht+1 = Θtηtk
δt
t h

φt

t ,
(21)

which reduces to the model discussed in the previous section whenever:

δt ≡ 0

∆t = βE (α)

{

[1− βE (φ)] γt
[1− βE (φ)] γt + βE (γ)φt

}γt

(22)

Θt =

{

βE (γ)φt

[1− βE (φ)] γt + βE (γ)φt

}φt

. (23)

Vector (zt, ηt, αt, γt, δt, φt) ∈ R
6
++ is a random vector independent and identically distributed,

and can take on m values, i.e., at each time t (zt, ηt, αt, γt, δt, φt) ∈ {(zi, ηi, αi, γi, δi, φi)}mi=1.
Shocks zt, ηt enter multiplicatively the two Cobb-Douglas production functions in (21), while
αt, γt, δt, φt represent shocks on the factor shares. We shall assume that 0 ≤ αi, γi, δi, φi < 1,
αi + γi ≤ 1 and δi + φi ≤ 1 for all i = 1, . . . ,m. Each vector realization, (zi, ηi, αi, γi, δi, φi),
occurs with (constant) probability pi, with pi ∈ (0, 1), i = 1, . . . ,m, and

∑m
i=1 pi = 1.

Our goal is to establish conditions under which the affine IFS

{

ϕt+1 = αtϕt + γtψt + ζt
ψt+1 = δtϕt + φtψt + ϑt,

, (24)

where the coefficients αt, γt, δt, φt are the exponents in the Cobb-Douglas production functions
in the original nonlinear IFS (21) and the additive random vector (ζt, ϑt) ∈ R

2 takes onm values
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corresponding to realizations of the multiplicative shocks (zt, ηt), is topological equivalent of
system (21); that is, there is a one-to-one continuous transformation from the dynamics of
(kt, ht) defined by (21) to those of (ϕt, ψt) as in (24). It is useful to rewrite (24) in vector terms
as

[

ϕt+1

ψt+1

]

=

[

αt γt
δt φt

] [

ϕt

ψt

]

+

[

ζt
ϑt

]

, (25)

where

Qt =

[

αt γt
δt φt

]

(26)

is a random 2 × 2 matrix that, together with the vector (ζt, ϑt) ∈ R
2, take on m values

corresponding to the m shocks realizations.
Consider the one-to-one logarithmic transformation (kt, ht) → (ϕt, ψt) defined by:

{

ϕt = ρ1 ln kt + ρ2 lnht + ρ3
ψt = ρ4 ln kt + ρ5 lnht + ρ6.

(27)

We aim at establishing conditions on parameters {(zi, ηi, αi, γi, δi, φi, ζi, ϑi)}mi=1 under which
coefficients ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, exist such that (27) defines a one-to-one transformation from
the dynamics of (kt, ht) defined by (21) to those of (ϕt, ψt) as in (24).

We start without further assumptions on {(zi, ηi, αi, γi, δi, φi, ζi, ϑi)}mi=1 besides zi > 0, ηi >
0, 0 ≤ αi, γi, δi, φi < 1, αi + γi ≤ 1 and δi + φi ≤ 1 for all i = 1, . . . ,m; then we will add any
further restriction at whatever step is required.

Use (27) to rewrite both sides of (24):
{

ρ1 ln kt+1 + ρ2 lnht+1 + ρ3 = αt (ρ1 ln kt + ρ2 lnht + ρ3) + γt (ρ4 ln kt + ρ5 lnht + ρ6) + ζt
ρ4 ln kt+1 + ρ5 lnht+1 + ρ6 = δt (ρ1 ln kt + ρ2 lnht + ρ3) + φt (ρ4 ln kt + ρ5 lnht + ρ6) + ϑt.

Then, use (21) to rewrite the LHS in each equation above in order to obtain the following two
equations:

ρ1 ln∆t + ρ1 ln zt + ρ1αt ln kt + ρ1γt lnht + ρ2 lnΘt + ρ2 ln ηt + ρ2δt ln kt + ρ2φt lnht + ρ3

= αtρ1 ln kt + αtρ2 lnht + αtρ3 + γtρ4 ln kt + γtρ5 lnht + γtρ6 + ζt, (28)

ρ4 ln∆t + ρ4 ln zt + ρ4αt ln kt + ρ4γt lnht + ρ5 lnΘt + ρ5 ln ηt + ρ5δt ln kt + ρ5φt lnht + ρ6

= δtρ1 ln kt + δtρ2 lnht + δtρ3 + φtρ4 ln kt + φtρ5 lnht + φtρ6 + ϑt. (29)

As these equations must hold for all t ≥ 0, under the i.i.d. assumption it is sufficient that they
hold for all parameters’ values, that is, for all i = 1, . . . ,m. Hence, from here on we replace the
time index t of each term involving only the model’s parameters with the index i = 1, . . . ,m,
while, clearly, the state variables kt and ht remain indexed by t. By equating the corresponding
coefficients in the LHS and the RHS, equations (28) and (29) become independent of values
taken by the variables ln kt and lnht; this is equivalent to the following conditions:















δiρ2 = γiρ4
γiρ1 = (αi − φi) ρ2 + γiρ5
(αi − φi) ρ4 + δiρ5 = δiρ1
γiρ4 = δiρ2,

for all i = 1, . . . ,m,

which, as the first and the last equations are the same, is equivalent to the following three
equations:







δiρ2 = γiρ4
γiρ1 = (αi − φi) ρ2 + γiρ5
(αi − φi) ρ4 + δiρ5 = δiρ1

for all i = 1, . . . ,m. (30)
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4.1 Case 1: γi = δi = 0 (Qt is a Diagonal Random Matrix)

Having in mind the growth model of Section 3.2, this scenario on one hand turns out to be
meaningless from the economic point of view because the two policies in (21) are uncoupled,
that is, each sector employs exclusively itself as the only input, physical capital to produce
physical capital, and human capital to produce human capital. On the other hand it leads to
a mathematical contradiction because when γi = δi = 0 for all i = 1, . . . ,m, E (γ) = 0 as well,
which implies that the terms ln∆i and lnΘi in (22) and in (23) are not defined:

∆i = βE (α)

{

[1− βE (φ)] γi
[1− βE (φ)] γi + βE (γ)φi

}γi

= βE (α)

{

0

0 + 0

}0

Θi =

{

βE (γ)φi

[1− βE (φ)] γi + βE (γ)φi

}φi

=

{

0

0 + 0

}φi

.

This fact is consistent with findings in La Torre et al. (2011; 2015), where it has been shown
the purely symmetric Sierpinski Gasket cannot be obtained as the attractor of a growth model;
in fact, such case is represented by an IFS of the type in (25) where Qi is a purely diagonal
constant (i.e., nonrandom) matrix with αi = φi ≡ 1/3.

4.2 Case 2: γi > 0

When γi > 0 for all i = 1, . . . ,m, the random matrix Qt in (26) is either upper diagonal or full.6

Using the first equation in (30) into the last two equations of (30) and dividing the second one
by γi yield











ρ1 =
αi − φi

γi
ρ2 + ρ5

αi − φi

γi
δiρ2 + δiρ5 = δiρ1.

If δi = 0 the second equation is always satisfied, while if δi > 0 we can divide it by δi and get
the same equation as the first one. In both cases (30) boils down to only two conditions:











ρ4 =
δi
γi
ρ2

ρ5 = ρ1 −
αi − φi

γi
ρ2

for all i = 1, . . . ,m. (31)

The first one implies that ρ4 = 0 whenever δi = 0 for all i = 1, . . . ,m, as in the model discussed
in Section 3.2 (as well as in models studied by La Torre et al., 2011; 2015). Conditions (31) must
hold for each i = 1, . . . ,m in order to let both variables ln kt and lnht disappear in equations
(28) and (29); therefore, pairing equations (31) with (28) and (29) we obtain a system of 4m
equations of the form



























ρ4 =
δi
γi
ρ2

ρ5 = ρ1 −
αi − φi

γi
ρ2

(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi) ρ3 − γiρ6 = ζi
(ln∆i + ln zi) ρ4 + (lnΘi + ln ηi) ρ5 + (1− φi) ρ6 − δiρ3 = ϑi

for all i = 1, . . . ,m. (32)

6The symmetric case δi > 0 is analogous and can be treated in a similar way as in the following.
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(32) is a system of 4m linear equations in 6 unknowns: ρ1, ρ2, ρ3, ρ4, ρ5, and ρ6; clearly, any
attempt to find a solution when there is more than one state of nature, i.e., when m ≥ 2, is
necessarily doomed to fail, as already with m = 2 (32) has 8 equations in 6 unknowns. In other
words, once again any hope in solving (32) for any truly random dynamics (at least m = 2
distinct states of nature) vanishes from the start; more restrictions on parameters are needed.

4.3 Case 3: Further Restrictions on Parameters’ Values

In order to (almost) halve the number of equation in (32) for each i, a natural restriction may
originate from the first two equations, i.e., on system (31), by letting them be independent of
i, so that they remain only two (fixed) conditions for any number m of shocks realizations. In
other words, we now assume that

δi
γi

≡ δ̄ and
αi − φi

γi
≡ ᾱ for all i = 1, . . . ,m. (33)

Under (33) the first two equations in (32), that is, system (31), become independent of the
other equations, so that we are left with the following system of 2m + 2 equations in the 6
unknowns ρ1, ρ2, ρ3, ρ4, ρ5, and ρ6:















ρ4 = δ̄ρ2
ρ5 = ρ1 − ᾱρ2
(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi) ρ3 − γiρ6 = ζi for all i = 1, . . . ,m
(ln∆i + ln zi) ρ4 + (lnΘi + ln ηi) ρ5 + (1− φi) ρ6 − δiρ3 = ϑi for all i = 1, . . . ,m.

After substituting ρ4 and ρ5 as in the first two equations into all the others, we obtain a system
of 2m equations in only 4 unknowns, ρ1, ρ2, ρ3, and ρ6, of the form

{

(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi) ρ3 − γiρ6 = ζi
(ln∆i + ln zi) δ̄ρ2 + (lnΘi + ln ηi) (ρ1 − ᾱρ2) + (1− φi) ρ6 − δiρ3 = ϑi,

which, rearranging terms, is equivalent to

{

(ln∆i + ln zi) ρ1 + (lnΘi + ln ηi) ρ2 + (1− αi) ρ3 − γiρ6 = ζi
(lnΘi + ln ηi) ρ1 +

[

(ln∆i + ln zi) δ̄ − (lnΘi + ln ηi) ᾱ
]

ρ2 + (1− φi) ρ6 − δiρ3 = ϑi
(34)

for all i = 1, . . . ,m.
We are thus left with a system of 2m linear equations of the type (34) in 4 unknowns: ρ1,

ρ2, ρ3 and ρ6. Clearly, any attempt to find a solution for (34) when there are more than two
states of nature, i.e., m > 2, is again doomed to fail. However, now there exist a minimal
configuration for the states of nature, m = 2, to represent a truly random scenario. Actually,
m = 2 is the only case in which system (34) is truly random, is linear and may have a solution
for ρ1, ρ2, ρ3 and ρ6 independent of the values for the parameters (zi, ηi, αi, γi, δi, φi, ζi, ϑi), that
is, for any arbitrary choice of the 16 values {(zi, ηi, αi, γi, δi, φi, ζi, ϑi)}2i=1.

As our goal is to pursue the construction of fractals on the plane R2, such scenario is clearly
insufficient, as at least 3 different values (shocks) for the multiplicative/ additive constants
zi, ηi, ζi, ϑi are required. Therefore, the only feasible option we are left with seems to be adding
more constraints on the parameters’ values that are still free, namely zi, ηi, ζi, ϑi. The idea is to
increase the number of unknowns in terms of values zi, ηi, ζi, ϑi in order to let (34) have always
2m equations in 2m unknowns. Because we want to have enough degrees of freedom on the
choice of the shape of the attractor to which the affine IFS (24) [or (25)] eventually converges,
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we actually leave such constraints affect only the original multiplicative shocks’ values zi, ηi,
while we keep control, except for γi > 0 and conditions (33), on the parameters αi, γi, δi, φi, ζi, ϑi

that fully define the IFS (24)/ (25).
Since for m = 2 system (34) behaves well and any additional state of nature adds, on one

hand, two more equations in (34) and, on the other hand, one more pair of values for the
multiplicative shocks zi, ηi, we may think of any number m of shocks realizations and system
(34) having 4 + 2 (m− 2) = 2m unknowns, of which the first 4 are the usual ρ1, ρ2, ρ3 and ρ6,
while the remaining 2m − 4 are a subset of the total 2m pairs (zi, ηi)-values [or, equivalently,
(ln zi, ln ηi)-values]. According to this method system (34) always has 2m equations and 2m
unknowns, of which 2m − 4 are pairs of multiplicative shocks values. The price to be paid,
however, is that, whenever m > 2, system (34) ceases to be linear, as the new unknowns (even
in their log-expression) ln zi, ln ηi enter multiplicatively the other unknowns of the type ρi.
Therefore, in order to solve (34) when m > 2 we necessarily must exploit numerical methods.

5 An Example of (Distorted) Barnsley’s Fern

The original Barnsley’s (1993) fern is produced by the IFS

[

ϕt+1

ψt+1

]

=

[

αt γt
δt φt

] [

ϕt

ψt

]

+

[

ζt
ϑt

]

,

where, for m = 4, according to example 1 the random matrix coefficients, additive constants,
and probability values are reported in Table 1.

i αi γi δi φi ζi ϑi pi
1 0 0 0 0.16 0 0 0.01
2 −0.15 0.28 −0.04 0.24 0 0.44 0.07
3 0.20 −0.26 0.23 0.22 0 1.60 0.07
4 0.85 0.04 0.26 0.85 0 1.60 0.85

Table 1: coefficients, additive constants, and probability values for the IFS generating the classical
Barnsley’s (1993) fern.

Clearly such values are quite distant from all the restrictions we introduced in the previous
sections. To begin with, we set β = 0.96. From Section 3 we learn that we must get rid of
the negative values for α2, γ3 and δ2 and set δi ≡ 0 for all i = 1, . . . , 4 in the fourth column;
next, according to Subsections 4.2 and 4.3 we must choose a nonzero value for γ1 and find
values for αi, γi and φi that satisfy (33). Assuming δi ≡ δ̄ ≡ 0 and αi = φi for all i = 1, . . . , 4
leaves parameter γi free and simplifies things quite a bit; as a result, δ̄ ≡ ᾱ ≡ 0 in (33). The
following Table 2 contains our tentative choice for parameters’ values that try to resemble the
table above as much as possible.

As a matter of fact, replacing parameters α2, γ3 with positive values which are the opposite
of the original ones makes the most damage to the original fern, as it destroys its symmetry.
Under these parameters’ choice,

E (α) = E (φ) =
4

∑

i=1

αipi = 0.7549 and E (γ) =
4

∑

i=1

γipi = 0.0719,
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i αi γi δi φi ζi ϑi pi
1 0.16 0.01 0 0.16 0 0 0.01
2 0.24 0.28 0 0.24 0 0.44 0.07
3 0.20 0.26 0 0.20 0 1.60 0.07
4 0.85 0.04 0 0.85 0 1.60 0.85

Table 2: our selection for the coefficients, additive constants, and probability values used in the
IFS (25).

such that the coefficients (22) and (23) defining the optimal policy of the model described in
Subsection 3.2 become:

i ∆i Θi

1 0.7131 0.9650
2 0.6863 0.6599
3 0.6922 0.6946
4 0.6731 0.8640

According to the last arguments in Subsection 4.3 we must choose two pairs of (zi, ηi)-values
[or, equivalently, (ln zi, ln ηi)-values] in order to solve the system of 8 equations defined by (34)
in the coefficients ρ1, ρ2, ρ3 and ρ6 and the remaining two pairs of (zi, ηi)-values [or, equivalently,
(ln zi, ln ηi)-values]. By (arbitrarily) choosing

ln z1 = ln η1 = −1 and ln z2 = ln η2 = −0.5, (35)

we find the following unique solution for system (34) by means of the standard (symbolic, not
numerical) ‘solve’ routine in Maple 2015:

ρ1 = ρ5 = 20.7061

ρ2 = −0.1193

ρ3 = 33.1413

ρ4 = 0

ρ6 = 25.5279,

with all multiplicative shocks configurations:

i zi ηi
1 0.3679 0.3679
2 0.6065 0.6065
3 0.5503 0.5801
4 1.2268 1.0393

where the first two lines correspond to the choice in (35) and the other two lines are found as
a solution of (34).

The resulting attractor of the IFS (25) obtained under our choice of parameters’ values in
Table 2 is plotted in Figure 2(a), while Figure 2(b) reports the attractor of the corresponding
nonlinear IFS (21). Both are obtained by tracing 50000 random interations7 of the IFS(25) and
(21) respectively according to the 4 probability values considered, pi ∈ {0.01, 0.07, 0.07, 0.85};
note the difference in scale induced on the former by the log-transformation (27) applied to the
latter. As anticipated before, the symmetry exhibited by the original Barnsley fern in Figure 1
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Figure 2: approximation thorugh 50000 random iterations of (a) the IFS in (25) and (b) the IFS in
(21) for our parameters’ values.

is being completely lost because of the choice to replace parameters α2, γ3 with opposite values
than those in Table 1.

Finally, by applying condition (5) of Theorem 1 to the random matrix Qt defined in (26)
we can easily check that, for the parameters’ values reported in Table 2, the invariant measure
supported on the attractor in Figure 2(a) turns out to be singular, as

|det (Q1)|p1 |det (Q2)|p2 |det (Q3)|p3 |det (Q4)|p4 < pp11 p
p2
2 p

p3
3 p

p4
4

becomes
0.4780 < 0.5732.

6 Conclusions

We extend the analysis of stochastic discrete-time optimal growth models to consider a two-
sectors framework in which the sector-specific production functions are subject to random
shocks affecting not only their productivity but also their factor shares. This extension is inter-
esting both from an economic and mathematical point of view, since it describes the potential
structural changes affecting modern economies and it gives rise to an IFS with variable coef-
ficients. We build on the model presented in La Torre et al. (2011) and show that through
Euler-Lagrange equations it is possible to characterize the optimal dynamics despite the fact
that factor shares are time-varying. Through an appropriate log-transformation we convert
the associated nonlinear IFS into a topologically equivalent linear IFS characterized by ran-
dom coefficients, and this allows us to show that the system converge to a singular measure
supported on some fractal set, which (because of the parameter restrictions imposed by our
log-transformation) turns out to be a distorted copy of Barnley’s fern. We also provide some
sufficient conditions under which the associated self-similar measure may be singular.

7The Maple 2015 code is avaiable from the authors upon request.
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This paper contributes to the stochastic growth literature and fractal attractors by pre-
senting some interesting new results, but it also opens new questions for future research. In
particular, extending the analysis in order to characterize also absolute continuity of the in-
variant measure in a two-dimensional linear IFS, but also singularity versus absolute continuity
directly in the original nonlinear two-dimensional IFS might provide some additional insights
on the relation between macroeconomic dynamics and fractal attractors. These further issues
are left for future research.
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