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Abstract

This paper analyzes market implications of behavioral finance by means of a
representative agent model of financial market. The goal is to provide a model as
tool for studying the emergence of behavioral market anomalies. We aim to show
that such model can contribute to behavioral finance research by demonstrating
if and to what extent risk-aversion can be used as a substitute of individual
biases in determining market anomalies.

1 Introduction

Economics and financial theories have for long been dominated by the Efficient Markets

Hypothesis (EMH), which posits that market prices fully reflect all available informa-

tion. Efficient markets do not allow investors to earn above-average returns without

accepting above-average risks. Financial theories and models rests on a formal repre-

sentation of an individual who acts as a utility maximize, given his preferences, and

adheres to the axioms of a rational choice theory. Over the past decades, however, psy-

chologists and behavioral scientists have documented robust and systematic violations

of principles of expected utility theory, Bayesian learning, and rational expectations.

The idea of individual investors who are prone to biases in judgment, and use vari-

ous heuristics, which might lead to anomalies on the market level, has been explored

within the field of behavioral finance. A number of behavioral models have been de-

veloped for the purpose of studying agents behavior, price discovery mechanisms, and

the reproduction of the market anomalies.

The aim of this work is to study and analyze if and to what extent, under clear

assumptions, the risk-aversion of the agent, solely, can determine deviations of prices

from its fundamental value and produce the emergence of any known market anomalies,
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such as momentum and returns autocorrelations (Shiller 1981; Poterba and Summers

1988). Since the influence of the agents’ behavior on the market dynamics represents

a key issue of the behavioral finance as a whole, in the literature there are numerous

theoretical studies (Barberis et al. 1998; Daniel et al. 1998; Levy et al. 1994; De Long

et al. 1990; Hong and Stein 1999). A pillar of such studies is represented by the

work of Barberis et al. (1998); their Model of Investor Sentiment tries to explain,

in a relative simple way, the emergence of the empirical findings on overreaction and

underreaction (Bondt and Thaler 1985; Jegadeesh and Titman 1993; Lakonishok et al.

1994). They present a model with a representative agent, showing on the theoretical

ground to what extent such market anomalies are determined by a biased behavior of

the market participant, in particular they refer to two specific cognitive biases: the

representativeness 1 and the conservatism 2 , which have been broadly studied in the

literature (Kahneman and Tversky 1974; Rabin 1998; Edwards 1968; Shefrin 2000).

Although both this and Barberis et al. (1998) works pursue a similar goal, the authors

present a model with a representative, risk-neutral investor with fixed discount rate,

whereas this model can be seen as its reinterpretation in a representative, risk-averse

framework. Barberis et al. (1998) in their model consider only one security, which

pays out 100% of its earnings as dividends and they assume that the agent forms its

expectation to forecast the earning stream; in our model we consider one security 3

as well but it is a short-lived asset, and we assume that agent forms its expectation

to forecast the dividend stream. In both models the agents beliefs on the realization

of the state of the world are determined as Markov process 4. Furthermore, Barberis

et al. (1998) consider only one case in which the agent does not realize the correct

model that is actually generating earnings; he rather believe the world moves between

two states or regimes, therefore he switches between two belief’s models; whereas we

study two different cases: one in which we assume the agent knows how actually the

market behaves, and one in which the agent is ‘uninformed’ so that his beliefs about

the realization of the state of world depend on the last observed realization.

In the following sections it will be provided a general description of the model, and

then will be studied the dynamics of agents wealth and the market price of asset in the

1Representativeness bias occurs when it is required to assess the probability of an object A be-
longing to a class or process B. The heuristic rule says that if object A has similar essential properties
to the class B, or it reflects the salient features of the process B, then the probability of A originating
from B is judged as high, and vice versa

2Conservatism refers to the tendency of individuals to change and adjust their beliefs only slowly
in the face of new evidence/information

3At the macro level, we take into account also a riskless asset, that we remove afterwards to
simplify the analysis, setting the riskless interest rate equal to zero

4A Markov process is a stochastic process that satisfies the Markov property. A process satisfies
such property if one can make predictions for the future of the process based solely on its present
state.
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Table 1: Timing of model’s evolution

ωt−1 pt

current time

ωt wt

two scenarios mentioned above. Finally will be shown some simulation experiments of

the model and it will be discussed the implications arising from the models results.

2 A General Description of The Model

Consider a simple pure exchange economy composed by a short-lived risky asset, with

price pt, paying an amount dt as dividends at the end of each period and a riskless

asset (bond) giving in each period a constant interest rate r > 0. The price of riskless

asset is fixed to 1. Let wt−1 stand for the wealth of a representative risk-averse agent

at time t − 1 and let xt stand for the fraction of this wealth invested into the risky

asset. Therefore, the agent derives the optimal amount xt by maximizing the expected

utility of his wealth at time t

xt = argmax E[U(wt)] = E
[
U
(
wt−1 xt

dt
pt

+ wt−1(1− xt)(1 + r)
)]

.

Assume that the world can be in two states: 1 or 2. Let ωt be the state of the

world at time t and assume further that the payoffs depends on ωt and dt−1, that is:

dt = fwt(dt−1). Agent’s beliefs about the states of world follow a Markov process: let

Πt be the individual probability assigned by the agent to the event that the world is

in the state 1 at time t. This probability is a function of the last realization of the

state of the world Πt = Prob [ωt = 1|ωt−1] = Π(ωt−1).

If let R = 1 + r and assume f2(dt−1) > f1(dt−1), the agent’ s expected logarithmic

utility becomes

(2.1) Πt ln
(
wt−1 xt

f1(dt−1)

pt
+ wt−1(1− xt)R

)
+ (1− Πt)

ln
(
wt−1 xt

f2(dt−1)

pt
+ wt−1(1− xt)R

)
.

The first order condition is given by
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Figure 1: Demand and supply function

dU

dxt
=

Πt

(
f1
pt
−R

)
xt

f1
pt

+ (1− xt)R
+

(1− Πt)
(
f2
pt
−R

)
xt

f2
pt

+ (1− xt)R
= 0 ,

which reduces to

xt

(f1
pt
−R

)(f2
pt
−R

)
+

Πt

f2
pt
−R

+
(1− Πt)
f1
pt
−R

(f2
pt
−R

)
= 0 .

If f1/R < p < f2/R then

(2.2) xt = pt

(
1− Πt

pt − f1
R

− Πt

f2
R
− pt

)
,

notice that for the demand Dt =
xt
pt
wt−1, it is

d

dPt
Dt < 0, and

lim
pt→(f1/R)+

xt
pt

= +∞ , lim
pt→(f2/R)−

xt
pt

= −∞ .

3 Representative Agent

The price is set to the level which satisfies the market clearing conditions. If the risky

asset has zero outstanding shares it is
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(3.1) pt =
1

R
E(dt) = Πt

f1(dt−1)

R
+ (1− Πt)

f2(dt−1)

R
,

which is equivalent to the risk neutral evaluation; otherwise the price is fixed by

wt−1 xt
pt

= 1

wt−1

(
1− Πt

pt − f1
R

− Πt

f2
R
− pt

)
= 1 ,

which solving for pt gives

(3.2) pt =

(
Rwt−1 + f1 + f2

)
+
√(

Rwt−1 + f1 + f2
)2 −Rwt−1Et−1[f ]− 4 f1f2

2 R
,

with Et−1[f ] = Π(ωt−1)f1(dt−1) + 1−Π(ωt−1)f2(dt−1) that is the expectation of f given

all the information available at time t− 1. In this way we obtain a quadratic equation

for pt in which from the graph is clear that only the minus solution is acceptable.

The system for wealth and prices reads

(3.3)

pt =

(
Rwt−1+f1+f2

)
+

√(
Rwt−1+f1+f2

)2
−Rwt−1Et−1[f ]−4 f1f2

2 R

wt = wt−1
[
(xt

fωt (dt−1)

pt
+ (1− xt)R

]
.

Given the normalization condition wt−1 xt
pt

= 1, we can rewrite di expression for the

evolution of wealth

wt =
wt−1 xtfωt(dt−1)

pt
+ wt−1(1− xt)R =

= fωt(dt−1) + (wt−1 − pt)R ,(3.4)

so that the syestem reads

(3.5)

pt =

(
Rwt−1+f1+f2

)
+

√(
Rwt−1+f1+f2

)2
−Rwt−1Et−1[f ]−4 f1f2

2 R

wt = fωt(dt−1) + (wt−1 − pt)R .
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Table 2: Transition probabilities between two realizations of the states of the world.

P (ωt|ωt−1) =

ωt = 1 ωt = 2

ωt−1 = 1 Π1 1− Π1

ωt−1 = 2 Π2 1− Π2

Table 3: Transition probabilities of the two equiprobable and independent states of
the world.

P (ωt|ωt−1) =

ωt = 1 ωt = 2

ωt−1 = 1 1/2 1/2
ωt−1 = 2 1/2 1/2

4 Fixed Investment share

In this section we consider an agent which invests a constant fraction of wealth in the

risky security.

4.1 Informed agent

We assume, in this case, that the agent operating in the market is well informed;

therefore he knows how the market behaves. In other words, the probability the agent

assigns to a certain realization of the state of the world equals the ”real” probability.

We further assume that the two state are equiprobable and independent from previous

realization such that Π1 = Π2 = 1/2 (see Table 2). If we assume R = 1, that is the

riskless interest rate equals zero, and d1 = f1(dt−1) = 1 − λ, d2 = f2(dt−1) = 1 + λ,

then

Et−1[f ] =
1

2
(1 + λ) +

1

2
(1− λ) = 1 .

4.1.1 Wealth Dynamics

The evolution of agent’s wealth can be rewritten as

(4.1) wt = fωt + (1− x)wt−1 ,

where wt is a function of the wealth at a time t − 1 and of the evolving of the states

of the world, and the price is simply fixed by

6



(4.2) pt = x wt−1 .

The expected value of the wealth at time t conditional on the knowledge of the wealth

at time t− 1 is

Et−1[wt|wt−1] = 1 + (1− x)wt−1 .

The dynamics of the wealth over the time depends on the realizations of the state of

the world, as stated in the first section, which can be shown by the transition matrix

(see Table 3).

The next step consists in determining the general expression of the wealth uncon-

ditional to the instant of time the model is, and analyzes the raw and the central

moment of the considered variable. The general expression for wt reads

(4.3) wt = (1− x)t w0 +
t∑
1

τ fωτ (1− x)t−τ ,

and its expected value is

E[wt] = (1− x)t w0 +
t∑
1

τ (1− x)t−τ =

= (1− x)t w0 +
1− (1− x)t

x
.(4.4)

Notice that if w0 = 1/x, then the expected value of wealth is stationary

(4.5) E[wt] =
1

x
.

In such particular case the wealth dynamics can be rewritten

(4.6) wt =
1

x
+

t∑
1

τ (fωt − 1)(1− x)t−τ ,

and the second central moment reads

7



V [wt] = E

[(
1

x
+

t∑
1

τ1 (fωτ1 − 1)(1− x)t−τ1 − 1

x

)
(

1

x
+

t∑
1

τ2 (fωτ2 − 1)(1− x)t−τ2 − 1

x

)

(4.7) =
t∑
1

τ1

t∑
1

τ2(1− x)2t−τ1−τ2 E[(fωτ1 − 1)(fωτ2 − 1)] .

According to the previous assumption it is

(4.8) E[(fωτ1 − 1)(fωτ2 − 1)] = λ2 δτ1,τ2 ,

where δ is the Kronecker delta, that is a function of two variables which can assume

two values: δi,j = 1 if i = j and zero otherwise. Now is it possible to solve 4.7 using

the result of 4.8, obtaining

V [wt] =
t∑
1

τ1

t∑
1

τ2(1− x)2t−τ1−τ2 δτ1,τ2 λ
2 =

=
t−1∑
0

τ1(1− x)2τ1 λ2 =

= λ2
1− (1− x)2t

1− (1− x)2
.(4.9)

To get a full view of the dynamics of the wealth we are now interested in analyzing

how the wealth at a certain time t and the wealth at a time t − 1 co-vary, that is

in determining their correlation coefficient. We expect to find the presence of evident

time dependence in the covariance function and strictly positive or negative correlation.

The cov(wt, wt−1) is given by

E
[(
wt − E[wt]

)(
wt−1 − E[wt−1]

)]
=

=E

[( t∑
1

τ1 (fωτ1 − 1)(1− x)t−τ1
)( t−1∑

1

τ2 (fωτ2 − 1)(1− x)t−τ2
)]

=

8



= (1− x) E

[( t−1∑
1

τ1 (fωτ1 − 1)(1− x)t−1−τ1
)2 ]

+

+E

[
(1− x)t−1(fωt − 1)

t−1∑
1

τ2 (fωτ2 − 1)(1− x)t−1−τ2
]

= ,

but given that the realization at time t is independent of the previous realization and

that

E[fωt − 1] = 0 and E

[( t−1∑
1

τ1 (fωτ1 − 1)(1− x)t−1−τ1
)2 ]

= V [wt−1] ,

then

(4.10) E
[(
wt − E[wt]

)(
wt−1 − E[wt−1]

)]
= (1− x) V [wt−1] ,

this imply that the covariance of the distribution depends on the time, as we expected.

The correlation coefficient, on the other hand, is given by

(4.11) C =
(1− x) V [wt−1]√
V [wt−1] V [wt]

= (1− x)

√
V [wt−1]

V [wt]
=

√
1− (1− x)2t−2

1− (1− x)2t
(1− x) ,

where for t → +∞, this ratio tend to 1 − x. It turns out that the autocorrelation

coefficient asymptotically tend to 1 − x, implying that each realization of wealth is

positively influenced by the previous realization, and it determines in a relevant way

the subsequent realization. Once determined the characteristics of the dynamic of

the wealth, the following step is to analyze the influence such dynamics have on the

distribution of prices.

4.1.2 Price dynamics

As assumed in the previous section, in this representative agent model the price at

any time t is a function of the optimum quantity of wealth invested in the short-lived

asset, and of the wealth of the representative agent at time t− 1 (see 4.1). In order to

study analytically the behavior of the variable price, let us introduce a new variable

r, that we call absolute return or absolute price growth. The absolute return is simply

the difference between the price at a time t and the price at a time t − 1, in term of

this model it is given by

9



rt+1 = pt+1 − pt = x(wt − wt−1) =

= x fωt − x2 wt−1 .(4.12)

The last step of the analysis consists in determining if there are any signals of pre-

dictability or correlation in price dynamics. To do so, we compute the covariance

between returns, from time t+ 2 to time t+ 1. Following from 4.12, since

(4.13) E[rt+1] = x− x2 1

x
= 0 ,

then

E(rt+2 rt+1) =

=E[(x fωt+1 − x2 wt)(x fωt − x2 wt−1)]

=x2 E[fωt+1 ] E[fωt ]− x3 E[fωt+1 ] E[wt−1]− x3 E[fωt wt] + x4 E[wt wt−1] =

=x4 E[wt wt−1]− x3
[
(1 + λ2) +

(1− x)

x

]
= ,(4.14)

but from 4.10 we know that E[wt wt−1] = V [wt−1] + 1/x2, then it turns out that

E(rt+2 rt+1) = x4
(
V [wt−1] +

1

x2

)
− x2 − x3 λ2 =

= x4V [wt−1]− x3 λ2 =

= x4λ2
1− (1− x)2t−2

1− (1− x)2
− x3 λ2 ,(4.15)

where for t→ +∞, if λ ≤ 1 the covariance in absolute returns distribution asymptot-

ically tend to zero, if λ > 1 the covariance is slightly positive for 0.5 < x < 1, and it

is slightly negative for 0 < x < 0.5.

4.2 Uninformed agent

In the previous subsection we discussed about the dynamics of wealth and prices

for the case of a representative ‘informed’ agent, where ‘informed’ means that the

agent assigns the same probability to the each possible realization of the state of the

world (see Table 3). Let now turn to the case of an ‘uninformed’ agent in which the

probability the agent assigns to the realization of the states of the world depends on

10



Table 4: Markovian transition matrix: probabilities of realization of the states depend
only on the previous realization.

P (ωt|ωt−1) =

ωt = 1 ωt = 2

ωt−1 = 1
1

2
+ δ1

1

2
− δ2

ωt−1 = 2
1

2
− δ1

1

2
+ δ2

the observation of the previous realization. The aim is to analyzes the dynamics of

the model and compare the results with the previous section.

4.2.1 Wealth dynamics

In this case the transition matrix can be represented by Table 4, with

Π1 =

1

2
− δ2

1− δ1 − δ2
and Π2 =

1

2
− δ1

1− δ1 − δ2
.

If we assume δ1 = δ2 = δ, where δ can assume values between −1/2 and 1/2 (δ ∈
(−1

2
; 1
2
)), we obtain a symmetric transition matrix as it is shown in Table 5. Notice

that

E[fωt |ωt−1] =

1 + 2λδ if ωt−1 = 1

1− 2λδ if ωt−1 = 1 ,

but the invariant distribution of the process is

(
− 1

2
,
1

2

)
so that

E[fωt ] = 1 .

As for the case of informed agent, notice that if w0 = 1/x, it yields the same general

expression for the wealth dynamics (4.6)

wt =
1

x
+

t∑
1

τ (fωt − 1)(1− x)t−τ ,

with stationary expected value of wealth (4.5).

Following the assumed procedure the next steps consist in analyzing to what extent

the wealth co-varies over the time and its degree of correlation, comparing it with the

result yielded by the 4.10 and by the 4.11, and in showing how such dynamics can

have an influence on the working of absolute return series.

Given the transition matrix in Table 5, the probability of the two states now

11



Table 5: Symmetric Markovian transition matrix.

P (ωt|ωt−1) =

ωt = 1 ωt = 2

ωt−1 = 1
1

2
+ δ

1

2
− δ

ωt−1 = 2
1

2
− δ 1

2
+ δ

depends on the previous realization, so that for τ1 = τ2

E[(fωτ − 1)2] = λ2 ,

for τ1 = τ2 + 1

(4.16) E[(fωτ1 − 1)(fωτ2 − 1)] = λ2
(

1

2
+ δ − 1

2
+ δ

)
= 2λ2δ ,

and in general

E[(fωτ1 − 1)(fωτ2 − 1)] = λ2 (2δ)|τ1−τ2| .

We start with the calculus of the cov(wt wt−1) , that is

E
[(
wt − E[wt]

)(
wt−1 − E[wt−1]

)]
=

=
t∑
1

τ1

t−1∑
1

τ2(1− x)2t−1−τ1−τ2E[(fωτ1 − 1)(fωτ2 − 1) =

=(1− x)V [wt−1] + λ2 (2δ)
1− (1− x)t−1(2δ)t−1

1− (1− x)(2δ)
.(4.17)

Since we defined the evolution of the states of the world as a Markov process, the

second central moment of the variable wealth now reads

V [wt−1] = E[(wt − E[wt])
2] =

=
t−1∑
1

τ1,τ2(1− x)2t−τ1−τ2 E[(fωτ1 − 1)(fωτ2 − 1)] =

=
t∑
1

τ1,τ2(1− x)2t−τ1−τ2 (2δ)τ1−τ2 λ2 .(4.18)

12



It is possible to compute the variance of wealth with

V [wt] =
t−1∑
0

i,j(1− x)i+j (2δ)|i−j| λ2 ,

defining V ∗ as the limit of variance for t→ +∞

V ∗ = lim
t→+∞

V [wt] =
+∞∑
−∞

d

+∞∑
d

s(1− x)s (2δ)|d| ,

with i+ j = s and i− j = d then

(4.19) V ∗ =
1

x

(
1

1− (1− x)(2δ)
+

(2δ)

1− x− 2δ

)
.

The last step in the analysis of the wealth distribution consists in computing the

covariance between wt and wt−2 , that is

E
[(
wt − E[wt]

)(
wt−2 − E[wt−2]

)]
=

=
t∑
1

τ1

t−2∑
1

τ2(1− x)2t−1−τ1−τ2E[(fωτ1 − 1)(fωτ2 − 1) =

=(1− x)2V [wt−1] + λ2 (1− x) (2δ)
1− (1− x)t−2(2δ)t−2

1− (1− x)(2δ)
+

+ λ2 (2δ)2
1− (1− x)t−2(2δ)t−2

1− (1− x)(2δ)
,(4.20)

then

(4.21) lim
t→+∞

cov(wt wt−1) = (1− x) V ∗ +
2δλ2

1− (1− x)(2δ)
,

that asymptotically tend to a positive value, in particular the higher is δ, the higher

in magnitude is its asymptotic value, and

(4.22) lim
t→+∞

cov(wt wt−2) = (1− x)2 V ∗ +
2δ(1− x)λ2

1− (1− x)(2δ
) +

(2δ)2λ2

1− (1− x)(2δ)
.

4.2.2 Price dynamics

In the previous section we defined the variable ‘absolute return’ r at a certain time t

as the difference between the price at a time t and the price at a time t− 1. In order

13



to find any signals of anomalies in price dynamics we need to analyze the covariance

in returns. To do so, given that

E[rt+1] = x− x2 1

x
= 0 ,

then it obtains

E(rt+2 rt+1) = x2E[(wt+1 + wt)(wt − wt−1)] ,

but we know that

E[(wt+1 − wt)(wt − wt−1)] = (1− x)2t−1λ2(2δ) ,

then it turns out

(4.23) E(rt+2 rt+1) = x2 (1− x)2t−1λ2(2δ) .

The covariance in absolute disstribution then is time dependent and for t → +∞
asymptotically tends to zero.

5 Simulation Experiments and Implications

In order to evaluate our model, in this section we try to extend the analytical findings

of the previous sections using artificial data sets of wealth, prices and absolute returns

simulated from our model, commenting the results and underlying its implications.

First we fix parameter values, setting the optimal fraction of wealth invested in the

risky asset to x = 0.5 and the shock in dividend to λ = 0.5. We set the initial level of

wealth to w0 = 1/x and we simulate the model for a time horizon T = 1000. Similarly

to the analytical study, we distinguish the simulation between the two cases: informed

agent and uninformed agent.

5.1 I.i.d. Process

We start the simulation experiments with the case in which the two states are equiprob-

able and independent from previous realizations. First we simulate the variable wealth;

its series is shown in Figure 2. In Section 4 we found the autocorrelation coefficient

of wealth, arguing that it should tend to 1− x, implying the presence of positive au-

tocorrelation in the series (equation 4.11). The simulation confirms our expectation,

as can be seen from the figure 3 which shows the autocorrelagram and the partial

14



autocorrelogram of wealth distribution. The PACF confirm the AR(1) nature of the

process.

However, we are interested in analyzing how wealth dynamic can influence the

distribution of prices and the distribution of absolute returns. We wish to find the

presence of autocorrelation in returns, indicating the emergence of anomalies in returns

consistent with the behavioral finance studies. Figure 4 and Figure 5 show the results

of the simulation for absolute returns, in terms of time-series and autocorrelograms.

These results, display the pattern we expect. As it is evident in the autocorrelogram

in Figure 5, the absolute returns are negatively autocorrelated in the short-run but

such correlation tend to disappear over longer horizons, pattern that confirms our

analytical findings and it is also consistent with the evidence on overreaction (Fama

and French 1988; Bondt and Thaler 1985). The same pattern occurs when simulating

the model with constant fraction of wealth set to x = 0.8, as shown in Figure 6 - 9.

As a consequence we have found that when the beliefs of a representative risk-averse

agent on the possible realization the world equals the real probability, assuming states

equiprobable and independent, even if we do not assume any kind of biases in the

representative agents beliefs, the risk-aversion of the agent, alone, can determine the

emergence of anomalies in the financial market.
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Figure 2: Wealth time-series for the last 100 periods, x = 0.5, λ = 0.5

Figure 3: Wealth autocorrelogram lag = 10
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Figure 4: Returns series for the last 100 periods, x = 0.5, λ = 0.5

Figure 5: Returns autocorrelogram lag = 10
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Figure 6: Wealth series sfor the last 100 periods, x = 0.8, λ = 0.5

Figure 7: Wealth autocorrelogram lag = 10, x = 0.8
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Figure 8: Returns series for the last 100 periods, x = 0.8, λ = 0.5

Figure 9: Returns autocorrelogram lag = 10, x = 0.8
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5.2 Markovian process

In the case that we called uninformed we assumed that the realization of the state the

world at a time t depends on the realization observed previously, at a time t − 1. In

particular we studied analytically the case of symmetric transition probabilities: that

is, observing a certain realization, for example assume it is positive, if δ is positive

it is more likely that the subsequent realization will be positive as well, on the other

hand, it is more likely to revert if δ is negative.We start the experiment simulating

the time series of wealth, prices and related absolute return in the case of positive δ,

in particular we set δ = 0.3. Looking at Figure 11, which shows the autocorrelagram

and the partial autocorrelogram, it is evident that wealth distribution is positively

autocorrelated, confirming our analytical findings.

However, as for the informed case, the main aim is to examine the dynamics of

the absolute return. In the case of δ > 0 we the autocorrelogram of returns shown in

Figure 13 confirm our expectations, returns are positively correlated in very short-run

implying that the sign of return could be a good predictor for the subsequent return,

but in the short-run tend to be negatively autocorrelated. Such results are consistent

with several empirical studies (Cutler et al. 1991), which found that such positive

autocorrelation exsists only in the very short run.

Let now turn to the case of δ < 0. In particular we set δ = −0.3 and then we

run the simulation. Both the wealth distribution and the price distribution follow the

pattern we derived in the analytical study (Section 4.2). In fact, as shown in Figure

15, wealth distributions is positively autocorrelated. For what concern the evolution

of returns series, Figure 17 shows that returns are negatively autocorrelated in the

short-run and then such autocorrelation tend to disappear over longer horizons. This

result confirms our analytical findings, and it is also consistent with a mean-reverting

behavior of returns treated in the literature (Poterba and Summers 1988; Lakonishok

et al. 1994). As a consequence we have shown that in a representative agent framework

in which the evolution of the states of the world follows a Markov process, the risk-

aversion of the agent that operates in the market, can cause the emergence of signals

of inefficiency in the stock market.
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Figure 10: Wealth time-series for the last 100 periods, x = 0.5, λ = 0.5, δ = 0.3

Figure 11: Wealth autocorrelogram lag = 10, δ = 0.3
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Figure 12: Returns series for the last 100 periods, x = 0.5, λ = 0.5, δ = 0.3

Figure 13: Returns autocorrelogram lag = 10, δ = 0.3
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Figure 14: Wealth series for the last 100 periods, x = 0.8, λ = 0.5, δ = −0.3

Figure 15: Wealth autocorrelogram lag = 10, δ = −0.3
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Figure 16: Returns series for the last 100 periods, x = 0.5, λ = 0.5, δ = −0.3

Figure 17: Returns autocorrelogram lag = 10, δ = −0.3
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6 Conclusions

Behavioral finance has provided both theory and evidence which suggest what devia-

tions of securities from fundamental values are likely to be, and why the can persist

over long time without being eliminated. Although empirical evidence was the real

first instrument of behavioralists against efficient market theorists, the debates over

market efficiency continue, so that behavioral finance derive its strength by its behav-

ioral explanations of the so-called anomalies, which materialized in theories of investor

behavior. The usefulness of behavioral finance lies in offering a richer description of

investor behavior than those captured by fully rational utility maximizers with limited

heterogeneityfor example in risk preferences by giving a collection of possible heuristics

and biases, which have been documented in a financial, or sometimes a more general,

decision-making setting.

In this context take place several behavioral models that have been developed dur-

ing the last 20 years, which try to explain, on the theoretical ground, the emergence of

market anomalies, return predictability, underreaction and overreaction, momentum

strategy and others. Despite many behavioral models, our model does not take into

account particular biases that can affect the investors behaviors, such as representative-

ness and conservatism in Barberis et al. (1998) or overconfidence and self-attribution

in Daniel et al. (1998), rather it wonders if and to what extent, a risk-averse agent can

be considered has biased in its beliefs and then determine stock price deviations or

returns autocorrelation. In our model there is a representative risk-averse agent, which

behaves as expected utility maximizers and invests a constant fraction of wealth in a

short-lived risky asset. Further we assumed that the world can be in two states, so that

we studied two different cases: one in which the two states are equiprobable and inde-

pendent from previous realization and one in which the realization of the states depend

only on the previous realization. After deriving analytically the dynamics of wealth,

price and returns, we simulated the model. The results of the simulation showed that

in both cases returns are autocorrelated, implying that returns are not completely

unpredictable as stated by market efficiency, even when agent has not biased beliefs.
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