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Abstract 

The introduction of harmful non-indigenous species is generally acknowledged to depend 
both on the propagule pressure imposed by openness to international trade and on the 
health of the receiving ecosystem. Bio-geographical factors however play a crucial role in 
determining the level of risk associated with trade. We develop an analytical treatment of 
bio-geographical similarity between trade partners, within a model that links the incidence 
of invasive species to resource extraction, pollution and to import volumes disaggregated 
by country and region of origin. The model, estimated with data on invasive species of all 
taxa in 123 countries, shows that considering the geographical structure of trade flows 
and the bio-geographical similarity between sources and destinations substantially 
improves our understanding of the drivers of biological invasions. The results allow us to 
identify, in a worldwide perspective, the relative risk of biological invasions (by habitat 
and organism type) entailed by different commercial partners.  

 

Keywords: Invasive species, alien species, non-indigenous species, trade, driving forces, 
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1. Introduction 

Due to their increasing severity, unintended introductions of non-indigenous 

species (NIS) and the resulting ecological and economic damage have received 

growing attention in recent years. If there is a long history of studies on biological 

invasions in the natural sciences, with classical works dating back to the 1950s 

(e.g. Elton 1958), economics has begun devoting attention to the issue in the last 

decade, after international scientific and policy-oriented initiatives (such as the 

Global Invasive Species Programme, sponsored by the United Nations and major 

international environmental organizations) called for the inclusion of an economic 

perspective on the driving forces and on the policy options. The corpus of 

economic analyses is now relatively rich, comprising studies on the valuation of 

economic costs (e.g. Turpie and Heydenrych 2000, Pimentel et al. 2005, Born et al. 

2005, McIntosh et al. 2007, Adams and Lee 2007, Horsch and Lewis 2009), on the 

economic determinants (Costello et al. 2007, Westphal et al. 2008, Hlasny and 

Livingston 2008, Pyšek et al. 2010, Essl et al. 2011), on policy strategies (Shogren 

2000, Eiswerth and Johnson 2002, Perrings 2005, Leung et al. 2005, Finnoff et al. 

2005, Horan and Lupi 2005, Margolis et al. 2005, Costello et al. 2007, Batabyal 

2006, Mehta et al. 2007, Mérel and Carter 2008, Olson and Roy 2010, Liu et al. 

2011, Rout et al. 2011, Margolis and Shogren 2012, among others), and on 

bioeconomic models that examine the influence of specific traits of invading 

species on their chances of establishing and on the optimal prevention and 

management options (Finnoff and Tschirhart 2005, Gutierrez and Regev 2005, 

Haight and Polasky 2010, Rauscher and Barbier 2010, Finnoff et al. 2010, Marten 

and Moore 2011). 
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A complete survey of the economic literature on biological invasions – a hint on 

its dimensions being offered by the about 140 Econlit entries between 2000 and 

today – is beyond the scope of this paper. This work places itself among the 

studies that seek to deepen our understanding of the economic determinants of 

the phenomenon – the human pressures that, by creating pathways of 

introduction and by altering the conditions of receiving ecosystems, facilitate 

biological invasions. As to the pathways, the main object of inquiry is international 

trade. There obviously are NIS intentionally introduced for agriculture, forestry, 

aquaculture or as pets and ornaments, but there appears to be consensus on the 

predominant role, in recent decades, of unintentional introductions. The latter 

also are those posing the most challenging policy issues. The role of trade flows 

has been examined in several recent studies: Hlasny and Livingston (2008) 

examine the relation between imports, immigration and international travel and 

introduction of non-indigenous insects in the United States. Westphal et al. (2008) 

conduct the first worldwide study of the impact of international trade 

(merchandise imports) on biological invasions, refereed to all species, using a 

regression tree analysis. Costello et al. (2007) investigate how the risk of invasions 

carried by imports varies by trading partner: they use data on shipping, 

disaggregated by country of origin, and consider marine species discoveries in the 

San Francisco Bay between 1853 and 1994. They distinguish imports arriving 

from the Atlantic/Mediterranean region, West Pacific, Indian Ocean. Essl et al. 

(2011) show the existence of a legacy of past economic activities on biological 

invasions, using alien species introductions recorded in European countries for 

different taxa before 1900, between 1900 and 1950, and after 1950 and the 

historical levels of trade and GDP. Pyšek et al. (2010), again using a regression tree 

approach, find that national wealth and human population density, analyzed 
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jointly with climate, geography, and land cover, are statistically significant 

predictors of the numbers of non-indigenous plants, fungi, and animals in 

European countries.  

Until now the availability of data has forced empirical research either to consider 

very broad variables (such as aggregate imports reaching a country, regardless of 

their origin) in order to include a large number of countries, or to aim at a deeper 

analysis at the cost of confining it to one country or site and/or to a restricted set 

of organism types. As a result, little consensus has emerged as yet on the relative 

importance of anthropogenic drivers of invasions.  

We develop an analytical model taking into account a few further elements that 

crucially characterize biological invasions dynamics, and then we test it on data 

pertaining all taxa on a global geographical scale. Specifically, we try to answer the 

following questions: (i) What is the relative importance of openness to trade and 

ecosystem health in determining invasibility? (ii) How does the spatial pattern of 

trade flows (infra-regional versus inter-regional flows, i.e. the distance between 

source and destination) affect the risk of invasion associated with trade? (iii) How 

does bio-geographical similarity affect the relative risk (for different habitats and 

by different organism types) entailed by different trading partners?  

We develop a conceptual framework based on three prior hypotheses: First, 

international trade (and merchandise imports in particular) is a crucial pathway of 

invasions. Second, invasions are more likely to occur where ecosystems are 

relatively more disturbed by economic activities. Third, the process of 

introduction and establishment of NIS has a spatially differentiated structure in 

which key roles are played by the similarity between bioclimatic conditions of the 

origin and destination site and by the extent to which the two ecosystems have 
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evolved in separation. The first notion is generally accepted in previous analyses 

of the economic determinants of invasions (Perrings et al. 2002; Levine and 

D’Antonio 2003; Hlasny and Livingston 2008, among others). The second, known 

as the disturbance hypothesis, has been dealt with mainly by biologists (e.g. Cohen 

and Carlton 1998, Enserink 1999, Cumming 2002, Tilman 2004, Pyšek et al. 2010), 

with few exceptions (e.g. Dalmazzone 2000), through empirical studies. The third 

one, although recognized as a crucial factor by biologists (e.g. Williamson 1996) 

and by some previous economic studies (e.g. Costello et al. 2007), has never been 

object of specific theoretical or empirical enquiry within the economic theory of 

biological invasions, and represents the major departure of this paper from the 

existing literature.  

 

2. Modelling biological invasions  

Biological invasion theory generally identifies at least three nested stages leading to 

NIS-related ecological damage: the transport and introduction of non-indigenous 

species in a new environment, their establishment in the destination habitat, and 

their spread to become pests and generate harmful effects for native species and 

human activities. Transport and introduction are mostly due to the international 

movement of commodities. Establishment and spread depend on local conditions 

– the health of the receiving ecosystems, its supply of resources – and on the 

capacity of the non-native organism to adapt to the new environment. The latter 

in turn depends on the bio-geographical similarity between the origin and 

destination sites as well as on the species-specific susceptibility to environmental 

and climatic conditions.  
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Biological invasions are a complex phenomenon. To disentangle causalities and 

relationships within such complexity, studies by natural scientists tend to 

concentrate on specific taxa and/or receptor sites. Economic analyses, in the 

attempt to identify general relationships, tend to design more aggregate models in 

which, however, phenomena affecting different species and different habitats may 

cancel out or blur the picture. The challenge we take with this research is to 

design an economic analysis of the determinants of biological invasions 

characterized by a high generality (worldwide rather than single receptor country 

or site, and considering all taxa), and at the same time taking into account the 

specificity of different habitats and of the bioclimatic conditions of the countries 

of origin and destination of NIS. 

We analyze the phenomenon of biological invasions in a multi-scale perspective. 

Natural scientists tend to consider, through empirical ad hoc observations, a 

restricted range of species at a locally determined geographical scale – generally a 

specific ecosystem. Economic studies usually investigate the dynamics of one or 

more species within, to and from one country. We retain countries as the 

economic unit of analysis, but develop a model that considers economies and 

ecosystems at a country level as nested in regions of supranational dimension, 

geographically determined according to the World Bank classification [South Asia 

(SA), North America (NA), Middle-East and North Africa (MENA), Latin 

America and Caribbean (LAC), Europe and Central Asia (ECA), Sub-Saharan 

Africa (SSA), East Asia and Pacific (EAP), Oceania (O)].  



 

7 

 

The number of species introduced, established and recognized as pests in a single 

country i (NISi) is used as a proxy of the intensity of damage at the national level.1 

Trade within the same macro-region can act as a pathway for species that are 

more likely to have had a certain degree of co-evolution due to past interaction. 

This reduces the probability that introductions lead to a pest outbreak, since the 

functional relationships operating in the new habitat will have some similarity to 

those of the source habitat. Evolutionary separation between the origin and 

destination region, conversely, increases the chances that the receiving 

environment does not possess the biological checks and balances to control the 

spread of the alien organism. We therefore distinguish between long distance 

(inter-regional) trade flows and short distance (infra-regional) flows, depending on 

the fact that country j where imports originate belongs to same region of the 

destination country i.  

Moreover, import flows work as a pathway according to the level of bio-

geographical similarity among country i and j. Bio-geographical similarity increases 

the chances an alien organism has to get established in the new environment. 

Within the framework of economic evidence-based studies, Costello et al. (2007) is 

the only previous work, to our knowledge, to explicitly deal with this factor. They 

implement bio-geographical similarity as an unknown parameter, to be estimated 

via maximum likelihood, reflecting the intrinsic infectiousness of the source 

region to the destination. Such parameter, however, does not necessarily 

                                                           

1 We are aware that this is a simplifying assumption. As Molnar et al. (2008:486) put it, “the 
number of alien species in a habitat does not indicate the level of threat posed to native 
biota or the damage already done. Many species establish in a new habitat with few 
disruptions, whereas others alter entire ecosystems or put native species at risk of 
extinction.” It does however convey an indication of the exposure to invasive species – and 
is the best indicator for which worldwide data exist. More refined analyses, including threat 
scoring systems based on documented adverse impacts of each NIS, will be due as soon as 
more detailed databases become available.  
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disentangle the climate matching effect, since it is likely to capture also a possible 

range of latent endogenous variables not related to bioclimatic proximity such as 

evolutionary separation between origin and destination country, shipping 

technology, policy variables, and so on. 

We propose, instead, to explicitly measure the impact of bio-geographical 

proximity on the invasion risk carried by trade by introducing an index (πij) 

measuring the similarity between biomes of the country of origin and destination 

of the trade flow. The indices πij are used to weight the amount of imports from j 

to i. The structure of weights is designed by revisiting the Jaffe index, an index of 

technological proximity commonly used in the literature of innovation and 

knowledge economics and based on compositional properties expressed in shares 

(Jaffe 1986). Our index of bio-geographical similarity can be written as 
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where f represent shares of land surface covered by different biomes according to 

the maps and classification of ecosystem typologies by Olson et al. (2001). 

Through GIS processing we overlaid and intersected political boundaries and 

ecosystem typologies so as to calculate the shares of land area of the following 14 

ecoregions within each country: 

1. Tropical and subtropical moist broadleaf forests; 
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2. Tropical and subtropical dry broadleaf forests; 

3. Tropical and subtropical coniferous forest; 

4. Temperate coniferous forest; 

5. Temperate broadleaf and mixed forests; 

6. Boreal forests/taiga; 

7. Tropical and subtropical grasslands, savannahs and shrublands; 

8. Flooded grasslands and savannahs; 

9. Montane grasslands and shrublands; 

10. Tundra; 

11. Mediterranean forests, woodlands and scrub; 

12. Desert and shrublands; 

13. Mangroves; 

14. Water bodies. 

Imports from any given country may also entail a different invasion risk for 

different habitats in the destination country. Considering NIS suited to different 

habitats (marine ecosystems, forests, range and grasslands, inland waters, urban 

areas, agricultural areas) separately allows us to bring to light significant 

relationships that do not emerge in the aggregate model, and estimate the relative 

riskiness of imports by region and country of origin for each receiving habitat. 

This conveys precious information for real world conservation policies.  
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Disturbances are expected to have a pro invasive effect as they create open space 

that may allow alien species to get established. Intermediate levels of disturbance, 

particularly, offer invaders an edge against the better adapted and therefore usually 

competitively stronger native species (Connell 1978; Rejmánek 1989; Lodge 1993; 

Etter and Caswell 1994; Pišek et al. 1998; Shigesada and Kawasaki 1997 and 

references therein). Being ours a worldwide analysis, the choice of variables that 

can be used to estimate this effect is affected by data coverage. We use emissions 

of PM10 and of SO2 as proxies of local pollution levels, and the extraction of wood 

biomass as an indicator of the level of pressure on natural resources. In addition, 

we use per capita GDP (in 2005 US $) as a measure of the level of economic 

activity and hence as an indirect indicator of overall pressure on a country’s 

natural systems.2  

Finally, we retain insularity, given the generally acknowledged sensitivity to 

biological invasions of island ecosystems. 

 

3. Econometric strategy 

Our dependent variable is the number of NIS causing harmful effects in country i. 

Invasions depend on merchandise imports, which we distinguish between infra-

regional (Φ ) and inter-regional (Τ ) flows, obtained by grouping countries of origin 

within the boundaries of the World Bank regions listed in Section 2. Other 

determinants are the disturbances generated by anthropic pressures that may 

                                                           
2 

We are aware of the limits of using flow variables (such as imports, GDP, emissions) as 

explanatory of a stock dependent variable (cumulative number of NIS). This is an issue also 

affecting several previous studies (e.g. Vilà and Pujadas 2001, Westapal et al. 2008, Pišek et al. 2010). 

However, information on new additions of NIS is not yet available on a worldwide scale, nor are 

available cumulative economic data on long time scales. 
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affect local ecosystems’ vulnerability to invasions )(D , and insularity )(I . A general 

form of the model can be written as:  

),,,( IfNISi DΤΦ=     [2] 

 

Given the non-negative and integer nature of the number of alien species, for the 

empirical analysis we adopt a count data approach. Negative binomial or Poisson 

models are standard suitable options. However, when the assumption of 

equivalence between mean and variance of the dependent variable is violated the 

estimates of a Poisson model are inefficient, with biased standard errors. For 

every estimated model a likelihood ratio test allows us to measure the probability 

of overdispersion. In the absence of overdispersion the Poisson standard model is 

the preferable option. For those regressions where the dependent variable exhibits 

overdispersion, we report results of a negative binomial estimation. 

Denoting with λ the expected number of NIS, we can express the general model 

[2] in log-linear form, including inter-regional and infra-regional effects, according 

to the Poisson and negative binomial approach:  
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where ijx is the value of trade flows from country j to i, and ijπ is the level of bio-

geographic similarity between origin and destination measured by the index [1]. 

Among the unknown parameters to be estimated, θ  captures the contribution to 

invasions of inter-regional imports, while φ the invasive potential of infra-regional 

imports. 

We do not consider the issue of the variation of marginal invasion risk as a function 

of time and of cumulative volume of imports by region, that in Costello et al. (2007) 

introduces a valuable element of realism. Our cross-sectional analysis globalizes the 

geographic coverage of previous analyses in order to investigate the spatial patterns 

governing invasion dynamics. The lack of availability of worldwide time series does 

not allow us to integrate also the time dimension (with current data, a panel analysis 

would be feasible only on the 28 countries included in the DAISIE European 

database).  

 

4. Data 

The dataset employed for the estimation of model [3] merges various sources of 

economic and ecological data, all considered at a country level, for 123 units of 

observation. The number of NIS derives from the IUCN Global Invasive Species 

Database, listing invasive species across all taxa recorded until August 2012 in 227 

geographic areas. This source also supplies the geographical distribution of the 

native and alien range of each species, identifying the preferred typology of habitat 

of each invader, and a classification by organism type. This additional biological 

information allows us to test model [3] on different subsamples of invaders, as 

discussed in Sections 2 and 5. 
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The source of merchandise import data is the IMF Direction of Trade Statistics, 

considered at the year 2005 in order to avoid possible effects of reverse causality on 

the dependent variable. Data on PM10 and SO2 are from the Emission Database for 

Global Atmospheric Research (EDGAR) released by the European Commission 

(2012) and are referred to the total volume of emissions by country in 2005. The 

World Development Indicators is the source for GDP and area of each country, 

while the extraction of wood biomass is taken from Kraussmann et al. (2008a, 

2008b). Synthetic descriptive analyses for these explanatory variables are reported in 

Table 1. In model [3] all the explanatory variables except dummies are expressed on 

a log-scale. This allows us to interpret the raw coefficients estimated by negative 

binomial regressions as elasticities (Cameron and Trivedi 2001). 

[Table 1 about here] 

 

5. Results 

Models estimations are presented in Table 2. The overall model explains the total 

number of invasive species by country. The same model is also estimated for 

subsamples of species classified according to their preferred habitat in their native 

range.3 Trade flows (infra-regional and inter-regional imports) are weighted by the 

matrix of indexes of bio-geographic similarity. We also run our regressions on the 

corresponding non-weighted models in order to compare the results. Raw 

coefficients of the import variables can be read as forces that increase (or reduce) 

the expected stock of NIS in a generic country.  

 

                                                           
3
 Identification of these subcategories is possible thanks to the detailed and uniform GISD classification. 
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[Table 2 about here] 

For all the presented models insularity is always significant (at a 99% level) and 

increasing, as expected, the (count) probability of invasions. Accounting for 

bioclimatic matching increases the weight of insularity in explaining invasions. In 

the analysis by habitat type, insularity is suggested to imply a higher risk factor for 

invasions affecting forests and urban areas, and lower for invasions in agricultural 

and marine areas. Insularity increases the number of invasive species in a country 

by a value in the range from e0.3 (agricultural areas) to e0.6 (forests). This confirms 

both the biological literature, that focuses on the vulnerability of endemic species 

evolved in relative isolation on island ecosystems, and previous studies focusing 

more on socio-economic factors (among which Dalmazzone 2000 and Pišek et al. 

2010). It appears instead to refuse Westphal et al. (2008)’s results that do not find 

any overall island effect. An economic perspective highlights that island states are 

also, on average, small open economies, and their higher than average level of 

imports (as a share of GDP, or per unit of area) adds to their ecological features in 

explaining their susceptibility to invasions. 

The distinction introduced in our model between infra-regional and inter-regional 

trade flows, which was meant to capture the distance and hence the evolutionary 

isolation between source and destination, does not provide a clear-cut answer on 

how the scale of international trade affects the risk of biological invasions. 

Intercontinental trade flows appear to convey higher risk of invasions in some cases 

(e.g. imports originating in the East Asia and Pacific region), whereas in other 

instances it is at the infra-regional scale that we detect the strongest link between 

commercial exchanges and NIS levels. Countries within Oceania are the most 

evident illustration of the latter. Most likely, distance acts on the risk of invasion 
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success in combination with other factors (among which insularity and bio-

geographical similarity). Belonging to the same World Bank region has not impeded 

species in Australia and New Zealand to evolve in separation and to become 

(combined with bio-geographical similarity) the most dangerous NIS in the other 

country. Similarly, trade within Latin America (a region characterized by a very large 

latitudinal extension and very differentiated ecosystems) if weighted by bio-

geographic similarity appears to convey more invasions than intercontinental trade.  

Much more definite appears to be the role of bio-geographic variables. The 

introduction of weights for bioclimatic similarity slightly but systematically 

improves the goodness of fit of the models.4 Particularly, it improves the explicative 

capacity of the inter-regional trade regressors.5  

Our analysis allows us to derive specific information also on the relative invasion 

risk linked with imports distinct by habitat of election of invaders. For instance, 

imports from South Asia convey a significant (at the 90% significance level) risk of 

invasions, mainly due to marine habitats invaders. Imports from North America, 

that in the overall model do not appear to affect the conditional average of the NIS 

number in receiving countries, reveal however to convey a relatively high risk of 

invasions for forest, agricultural, and urban areas. Similarly, Middle East and North 

African countries (that in the overall model appear to be harmless) reveal to be, in 

                                                           
4
 Our modeling framework is based on maximum likelihood. Model selections are based on Pseudo R-

squared values. Information criteria such as BIC and AIC do not convey additional insights for the 

comparison between weighted and non-weighted models, as the number of parameters, the estimation 

technique and the sample composition remain unchanged. 

5
 This could suggest that the bio-geographic similarity weights are helpful in explaining spatial 

heterogeneity only on long distance trade relationships. If so, a model where weights for bioclimatic 

similarity are applied only to inter-regional flows should perform even better. We checked: the best 

overall goodness of fit remains that of the model where weights are applied to all trade flows. 
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the analysis disaggregated by habitat, trading partners conveying significant 

invasions risks for marine, urban, and agricultural areas (but not for forests). 

Marginal effects of the estimated negative binomial models may be employed to 

compute values of the marginal risk of invasions across regions, as in Costello et al. 

(2007). This marginal invasion risk (MIR) can be written as  

 

        )'exp( ijjMIR xββ=
     

 [4] 

 

It quantifies the expected increase in the number of invasions generated by a 

marginal variation of imports from a specific region, and conditional to the point 

values of other covariates (the vector ix ).  This generalizes the results in Costello et 

al. (2007) who compare the time variation of MIR among three wide geographical 

regions of origin relatively to one destination site (San Francisco Bay). Using 

regional averages of MIR computed with numerical values of parameters of the 

overall model in Table 2, we can use [4] to compute for example that a unit increase 

in imports from South Asia is linked to 3.13 additional NIS for Oceania, 2.06 for 

North America, 1.35 for European and Central Asian countries, 0.19 for Sub-

Saharan Africa, 1.28 for Middle East and North Africa and of 0.33 within countries 

of the Latin American and Caribbean region.  Conversely, one can compute the risk 

for any country (or region) associated with different trading partners. For example, 

for the United States the highest expected marginal invasion risk is associated with 

trade inflows from Oceania (37.02). A marginal increase of US imports from South 

Asia is expected to generate 17.2 additional invasions, whereas from European and 

Central Asian countries only 1.70. 
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Bio-geographic similarity does matter in explaining the relationship between trade 

and invasions. This notwithstanding, in several cases trading partners that do not 

emerge as significantly risky in the weighted models do convey a statistically 

significant risk in the non-weighted models. In the interpretation of the analysis 

attention should be given to the fact that so far we consider NIS from all taxa 

grouped together. In the real world the sensitiveness of organisms to bioclimatic 

matching is far from uniform across taxonomic groups. To address this, we look at 

the impact of our regressors on different organism types (Table 3). Insects and 

fungi turn out to be the least sensitive organisms to climate: for them the weighted 

model does not improve the explicative capacity. This confirms findings in Pišek et 

al. (2010). In other words, the weighted model design based on the Jaffe index risks 

to overemphasize the importance of bioclimatic similarity in those cases where the 

prevalent risk of invasions pertains insects or fungi. Asian long-horned beetle 

(Anoplophora chinensis) and other insect infestations in North American forests, for 

example, may help explain anomalies in the performance of weighted vs. non-

weighted models.  

[Table 3 about here] 

In the weighted model, all indicators of disturbance have a significant, positive 

correlation with the number of NIS (with the only exception of SO2 emissions on 

the number of marine invaders). Among the physical indicators, wood extraction 

has a higher impact than pollution. This supports the hypothesis that the removal 

of biomass from ecosystems creates open physical and ecological space for invaders 

(for example Rejmánek 1989, Williamson 1996, Shigesada and Kawasaki 1997). In 

both weighted and non-weighted models, per capita GDP appears to be a highly 

significant determinant of the NIS level in a country. Its coefficient is the highest 
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among the disturbance variables, consistently with the fact that it subsumes the 

effect of many different factors.  

For all the regressions with the exception of the weighted and non-weighted model 

for insects, a likelihood ratio test allowed us to reject the null hypothesis of 

equivalence between mean and variance. The presence of overdispersion induced 

us to adopt in these cases a negative binomial estimation, as standard Poisson 

estimates would result in biased standard errors.  We implement a second set of 

2χ -based LR tests in order to check the equivalence of all the region-specific 

parameters θ . We also test the null of equivalence of all the parameters φ  for each 

regression. These tests are all confirming (at a 95% level) the hypothesis of 

differentiated magnitudes of risk invasion not only for long distance trade flows, 

but also for infra-regional exchanges. 

Our regression includes a high number of variables relative to sample size. As a 

robustness check we perform a regression on simplified models of the impact of 

total exports on the number of NIS exported to other countries and of the impact 

of total imports on the number of NIS registered in each receiving country. These 

regressions confirm the contribution of propagule pressure trough international 

trade on invasives, in both directions (impact of one country on the rest of the 

world and impact on one country from the rest of the world) 

 

Conclusions 

Previous literature has recognized the role of international trade as a driver of 

biological invasions. It has also been acknowledged that imports from different 

regions convey heterogeneous risks. This work gives analytical treatment to the 
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weight of bio-geographical similarity between sources and destinations in 

determining the risk associated with trade flows, and it includes it in a model taking 

into account distance between trading partners, sources of anthropic disturbance to 

ecosystems, affected habitats, organism types.  

Our theoretical model is tested through an empirical analysis covering all taxonomic 

groups of potential invaders, with a geographical coverage of 123 countries in all 

continents. This expands on many of the studies currently available, which focus on 

one class of organisms or on one environmental medium, and often focus on one 

country or site as the object of empirical analysis or as an example for estimating 

the parameters of a theoretical model.  

Using some specific indicators of local pressure on ecosystems (emissions of PM10 

and of SO2, extraction of wood biomass) this work also refines previous analyses 

on socio-economic drivers of invasions based only on more generic proxies of 

anthropogenic disturbance such as GDP or population density. 

Insularity is confirmed to represent an important predictor of invasibility. We 

estimate it to be a higher risk factor for invasions affecting forests and urban areas, 

and lower for invasions in agricultural and marine areas. Anthropic disturbance to 

ecosystems, both measured through physical indicators of emissions and biomass 

extraction and by broad proxies of economic activity such as per capita GDP, turns 

out to be significantly associated with NIS numbers.  

The empirical analysis confirms the theoretical hypothesis that climate and 

ecological similarity affect invasion success, showing the superiority of the models 

accounting for the bio-geographical location of trading partners over those treating 

all trade flows as involving an identical potential of bioinvasions. The invasions risk 



 

20 

 

associated with imports from South Asia, from example, varies with the bio-

geographical features of the destination, and turns out to be twice as high for 

trading partners in Oceania than for European and Central Asian countries, and 

low for Sub-Saharan Africa and Latin America. For the United States imports from 

Oceania have a potential invasive risk that is the double of that implied by imports 

from South Asia, and about twenty times the marginal invasion risk of imports 

from Europe and Central Asia. Our model thus provides an information tool that 

can be used to compute values of the marginal risk of invasions across regions – 

the risk of conveying invasions that each country or region represents for others, 

and the risk for any country or region associated with different trading partners.  

The model also allows analysts to estimate the relative invasion risk linked with 

imports from specified countries and/or world regions distinct by habitat of 

election of invaders, and hence to identify risky trading partners for marine habitats, 

urban and agricultural areas, forests. Our analysis shows, for example, that imports 

from North America convey a relatively high risk of invasions for agricultural, 

urban and forest areas, whereas imports from Middle East and North African 

countries are dangerous sources of NIS affecting agricultural, urban and marine 

systems.   

Considering scale and bio-geographical features within a parsimonious analytical 

framework compatible with currently available datasets can help us better 

understand the relationship between trade flows and risks of biological invasions. 

On the one hand, it provides an overall interpretive key of patterns governing 

biological invasions at a global scale. On the other, it enables country-specific 

valuations of the risk associated with different trading partners and of the relative 
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control policies – both generally and with reference to the protection of specific 

habitats.  

A growing awareness of the ecological and economic damages associated with 

biological invasions and the evolution of monitoring techniques are driving a fast 

evolving availability of data. This is likely to enable in the near future several 

desirable refinements of the analysis, with respect to (i) the treatment of 

endogeneity or spatial dependence between NIS levels in neighboring countries, 

which could be addressed through spatial econometric techniques; (ii) the use of 

rates of NIS introductions rather than cumulative stocks as a dependent variable; 

(iii) consideration of trade flows disaggregated by agricultural, manufactured, fuel 

imports. The development of analyses based on gravity models would be an ideal 

extension, which will have to await the availability of large coverage, compatible 

data on NIS distinct by source country.   

Finally, the issue of whether and how the scale of international trade affects the risk 

of biological invasions needs further research. A separate assessment of the role of 

intercontinental, regional and local dispersal of NIS requires more complex 

information than separating infra-regional and inter-regional trade flows, and the 

development of an ad hoc analytical framework. Because global, regional and local 

dispersal are controlled by different mechanisms and the ecological effects of 

invasions are scale-dependent, insights on the scale dimension of the invasion 

processes would contribute to establishing priorities in designing control policies.   

This is one further interesting direction for future research.  
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Table 1   Description of variables  

Variable 
description 

Unit Mean St.Dev. Min-Max  Source 

Number of NIS  32.32117 49.54498 1-447 2012 GISD 

Island  0.116788 0.322347 0-1  Our elaboration 

Disturbance variables 
Density of wood 
biomass extraction 

109g/km2 .0305506 .0355877 4.47 e+08- 0.001957 2000 
Kraussmann et al., 
2008 

PM10  emissions 109g 1.43e+08 4.05e+08 429646.2- 2.56e+09 2005 EDGAR v4.2 

SO2 emissions 109g 1585.788 5803.417 3.35 - 59505.2 2005 EDGAR v4.2 

Per capita GDP US$ 9090.574 14297.15 115 – 66638 2005 WDI 

Inter-regional trade variables  
 

South Asia  109US$ 1.292427 3.866935 0 - 34.8548 2005 

IMF Direction of 
Trade Statistics 

North America 109US$ 6.587797 18.74274 0 - 162.7011 2005 

Latin America & 
Caribbean 

109US$ 4.273188 26.85536 0 - 308.4394 2005 

Middle East North 
Africa 

109US$ 3.135383 11.20066 0 - 101.1286 2005 

Europe Central Asia 109US$ 9.661675 39.37521 0 - 417.9432 2005 

Sub Saharan Africa 109US$ 1.187386 5.511928 0 - 57.1656 2005 

East Asia & Pacific 109US$ 14.45527 55.73803 0 - 586.3042 2005 

Oceania 109US$ .990514 3.926123 0 - 33.74123 2005 

Infra-regional trade variables 
 

South Asia (infra-
regional) 

109US$ .0802044 .4272821 0 - 2.872 2005 

IMF Direction of 
Trade Statistics 

North America 
(infra-regional) 

109US$ 3.970912 33.20768 0 - 317.604 2005 

Latin America & 
Caribbean 
(infraregional) 

109US$ .8621584 3.22792 0 - 22.61345 2005 

Middle East North 
Africa (infra-
regional) 

109US$ .2117569 .860327 0 - 6.64211 2005 

Europe Central Asia 
(infra-regional) 

109US$ 33.59502 101.1365 0 -798.8963 2005 

Sub Saharan Africa 
(infra-regional) 

109US$ .1376644 .5588395 0 - 5.7537 2005 

East Asia & Pacific 
(infra-regional) 

109US$ 2.324238 18.37133 0 - 205.6871 2005 

Oceania (infra-
regional) 

109US$ .0886204 .7316118 0 - 6.361 2005 
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Table 2   Estimation results, for the overall models and for urban, agricultural areas, marine habitats and 
forests 

 Overall Urban areas 
Agricultural 

areas 
Marine habitats Forests 

 weighted 
not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 

Island 
0.568*** 0.535*** 0.579*** 0.566*** 0.382*** 0.363*** 0.484*** 0.336** 0.600*** 0.573*** 

(4.985) (4.200) (5.302) (4.350) (3.744) (3.050) (3.130) (2.091) (5.012) (4.226) 

θ South Asia 
0.0697* 1.25e-05 0.0492 1.15e-05 0.0549 1.06e-05 0.110** 1.11e-05 0.0514 8.84e-06 

(1.787) (1.001) (1.235) (0.974) (1.494) (1.020) (2.148) (1.279) (1.206) (0.789) 

θ North America 
-0.0486 -1.42e-06 -0.0630* -1.10e-06 -0.0582* -7.09e-07 0.00619 2.96e-06 -0.0669* -9.41e-07 

(-1.426) (-0.711) (-1.847) (-0.556) (-1.853) (-0.404) (0.141) (1.514) (-1.835) (-0.475) 

θ Middle East 

North Africa 

0.0167 0.0520 0.0467** 0.0779** 0.0419** 0.0741** 0.0585** 0.0984** 0.0433** 0.0311 

(0.901) (1.443) (2.553) (1.997) (2.443) (2.121) (2.477) (2.008) (2.206) (0.781) 

θ Latin America 

Caribbean 

-0.0184 -0.00825 -0.00716 0.0428 -0.00416 0.0518 0.0471 0.117** -0.00432 0.0349 

(-0.750) (-0.218) (-0.294) (1.065) (-0.186) (1.425) (1.390) (2.148) (-0.164) (0.824) 

θ Europe Central 

Asia 

0.00691 -0.134* -0.0388 -0.307*** -0.0516** -0.324*** 0.0235 -0.136 0.000221 -0.262*** 

(0.266) (-1.805) (-1.486) (-3.705) (-2.151) (-4.325) (0.670) (-1.234) (0.00782) (-2.999) 

θ Sub-Saharan 

Africa 

-0.101*** -0.0557** -0.107*** -0.0191 -0.111*** -0.0234 -0.119*** -0.0149 -0.0848*** 0.0262 

(-4.081) (-1.969) (-4.479) (-0.645) (-4.982) (-0.874) (-3.725) (-0.375) (-3.294) (0.851) 

θ East Asia Pacific 
-0.00457 0.121** 0.0116 0.197*** 0.0150 0.171*** -0.0752 -0.0181 0.0351 0.225*** 

(-0.139) (2.072) (0.323) (2.969) (0.451) (2.876) (-1.557) (-0.191) (0.897) (3.268) 

θ Oceania 
0.133*** 0.139*** 0.183*** 0.0972** 0.153*** 0.0977** 0.0890* 0.0719 0.135*** 0.0693 

(3.696) (3.270) (5.115) (2.189) (4.589) (2.436) (1.782) (1.144) (3.491) (1.507) 

φ South Asia 
0.0836 -0.0167 0.0556 0.00827 0.0618 0.00693 0.112 0.0575 0.0597 0.0227 

(1.574) (-0.472) (1.030) (0.227) (1.234) (0.216) (1.399) (1.308) (1.039) (0.628) 

φ North America 
0.0723 0.0768** 0.0536 0.0634** 0.0454 0.0525* 0.0736 0.0803*** 0.0394 0.0629** 

(1.545) (2.421) (1.180) (2.048) (1.086) (1.926) (1.225) (2.769) (0.809) (2.098) 

φ Middle East 

North Africa 

0.0384 0.0977** 0.0437 0.120*** 0.00695 0.0819** 0.0619 0.184*** 0.0101 0.0536 

(0.797) (2.336) (0.863) (2.616) (0.150) (2.003) (0.904) (3.255) (0.179) (1.104) 

φ Latin America 

Caribbean 

0.0813** 0.0487 0.106*** 0.112*** 0.0793** 0.0966*** 0.103* 0.167*** 0.0771* 0.0733** 

(2.219) (1.469) (2.842) (3.220) (2.272) (3.133) (1.887) (3.595) (1.855) (2.025) 

φ Europe Central 

Asia 

0.00531 -0.104 -0.0443 -0.269*** -0.0744** -0.302*** 0.00270 -0.0891 -0.0229 -0.236*** 

(0.172) (-1.631) (-1.398) (-3.714) (-2.545) (-4.625) (0.0613) (-0.921) (-0.658) (-3.095) 

φ  Sub-Saharan 

Africa 

-0.00657 0.00833 -0.000510 0.0812** -0.0242 0.0548* -0.0488 0.0749* 0.0260 0.114*** 

(-0.150) (0.255) (-0.0115) (2.348) (-0.582) (1.770) (-0.721) (1.702) (0.527) (3.240) 

φ East Asia Pacific 
0.0185 0.0808 0.0178 0.159** 0.0315 0.151** -0.0990* -0.0552 0.0376 0.193*** 

(0.443) (1.391) (0.409) (2.440) (0.786) (2.573) (-1.651) (-0.589) (0.780) (2.868) 

φ Oceania 
0.316*** 0.260*** 0.353*** 0.222*** 0.321*** 0.214*** 0.195** 0.238*** 0.283*** 0.187*** 

(5.126) (4.490) (5.972) (3.696) (5.825) (3.986) (2.490) (3.128) (4.426) (3.045) 

PM10 emissions 

 

0.0903** 0.0654 0.0852** 0.0593 0.0558 0.0390 0.114** 0.0624 0.0830** 0.0492 

(2.412) (1.585) (2.266) (1.330) (1.629) (0.989) (2.224) (1.122) (2.035) (1.063) 

SO2 emissions 
0.132*** 0.106** 0.0802* 0.0745 0.130*** 0.120*** 0.0587 0.0807 0.0807* 0.0822* 

(3.141) (2.353) (1.905) (1.568) (3.328) (2.812) (0.962) (1.382) (1.746) (1.691) 

Wood biomass 

extraction 

0.167*** 0.150*** 0.193*** 0.155*** 0.140*** 0.102*** 0.139*** 0.0838* 0.180*** 0.139*** 

(5.837) (5.200) (6.166) (4.641) (5.008) (3.529) (3.124) (1.938) (5.305) (3.995) 

Per capita GDP 
0.188*** 0.159*** 0.237*** 0.230*** 0.235*** 0.224*** 0.214*** 0.193** 0.191*** 0.187*** 

(4.068) (2.790) (4.854) (3.538) (5.265) (3.925) (3.178) (2.283) (3.645) (2.795) 

           

Constant 
0.300 0.754 -0.0755 0.258 0.0540 0.546 -2.073* -1.745 -0.235 -0.0188 

(0.371) (0.875) (-0.0938) (0.281) (0.0729) (0.671) (-1.904) (-1.614) (-0.271) (-0.0199) 

Overdispersion 
-2.639*** -2.424*** -3.179*** -2.646*** -3.351*** -2.929*** -16.84 -16.17 -3.297*** -2.869*** 

(-11.56) (-11.87) (-8.999) (-9.970) (-9.034) (-10.05) (-0.0425) (-0.0478) (-7.301) (-8.386) 

Observations 123 123 123 123 123 123 123 123 123 123 

Pseudo R-squared 0.239 0.231 0.281 0.261 0.274 0.262 0.313 0.291 0.282 0.273 

z-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1        
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Table 3    Estimation results, by organism type 

 Tree (no) Shrub (no) Mammals (yes) Fungi (no) Fish (yes) Bryozoan (yes) Birds (no) Grass (-) Insects (no) 

 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

not 

weighted 
weighted 

Island 
0.940*** 0.960*** 1.103*** 1.118*** 1.007*** 1.011*** -0.475 -0.445 0.319** 0.342*** 0.656* 0.671* 0.425*** 0.473*** 0.223 0.219 0.471*** 0.515*** 

(4.804) (4.373) (5.318) (5.084) (3.645) (3.729) (-1.488) (-1.395) (2.525) (2.698) (1.750) (1.832) (2.596) (2.756) (1.069) (1.051) (3.204) (3.342) 

θ  Imports 
0.354*** 0.112** 0.249*** 0.0653 0.107 0.166** 0.165 0.0291 0.0935** 0.0829** 0.831*** 0.661*** 0.245*** 0.144** 0.0972 0.0425 0.217*** 0.0942** 

(4.722) (1.971) (3.013) (1.104) (1.055) (2.169) (1.248) (0.294) (2.006) (2.387) (3.213) (3.371) (3.227) (2.489) (1.222) (0.698) (3.827) (2.189) 

φ  Imports 
-0.230*** -0.215*** -0.118* -0.109* 0.0328 -0.0169 0.112 0.119 0.0272 0.00604 -0.0994 -0.0811 -0.130*** -0.123*** -0.00398 -0.0357 -0.0137 -0.0335 

(-4.121) (-3.822) (-1.945) (-1.934) (0.425) (-0.251) (1.234) (1.421) (0.800) (0.196) (-0.771) (-0.812) (-2.689) (-2.966) (-0.0667) (-0.706) (-0.333) (-0.913) 

Pm10 
0.217*** 0.262*** 0.169** 0.195** 0.114 0.115 -0.122 -0.0732 -0.00403 0.00889 0.0426 0.146 0.0266 0.0516 0.152** 0.165** 0.146*** 0.177*** 

(3.234) (3.620) (2.255) (2.510) (1.264) (1.316) (-0.879) (-0.544) (-0.0916) (0.204) (0.218) (0.783) (0.406) (0.776) (2.092) (2.327) (2.849) (3.398) 

SO2 
0.0124 0.109 0.131 0.231** 0.0484 0.0255 0.139 0.211 0.194*** 0.198*** -0.125 -0.166 0.125 0.158* 0.123 0.162* 0.00952 0.0691 

(0.147) (1.247) (1.348) (2.415) (0.436) (0.245) (0.847) (1.350) (3.455) (3.658) (-0.436) (-0.631) (1.476) (1.901) (1.318) (1.811) (0.148) (1.078) 

Wood biomass 

extraction 

0.177*** 0.192*** 0.184*** 0.202*** 0.0165 0.0377 0.00512 -0.00974 0.0859** 0.0956*** -0.00444 -0.0416 0.0846 0.0878 0.130** 0.151** 0.0884** 0.108** 

(2.937) (3.022) (2.810) (3.009) (0.222) (0.506) (0.0473) (-0.0886) (2.500) (2.758) (-0.0226) (-0.252) (1.397) (1.516) (2.085) (2.453) (2.045) (2.460) 

Per capita GDP 
0.179* 0.258*** 0.161 0.218** 0.346*** 0.329*** 0.477*** 0.557*** 0.0138 0.0258 0.294 0.294 0.378*** 0.393*** 0.205** 0.249*** 0.143** 0.208*** 

(1.936) (2.742) (1.611) (2.271) (2.658) (2.804) (3.083) (4.073) (0.246) (0.490) (1.320) (1.554) (4.589) (5.075) (2.227) (2.910) (2.130) (3.223) 

Overdispersion 
-1.108*** -0.831*** -0.978*** -0.842*** -0.478* -0.532** -16.82 -15.93 -2.341*** -2.336*** -2.497 -14.66 -4.571 -3.488** -1.319*** -1.343*** -2.084*** -1.894*** 

(-4.693) (-3.853) (-4.216) (-3.827) (-1.823) (-1.982) (-0.0146) (-0.0249) (-6.091) (-6.227) (-0.765) (-0.0166) (-1.157) (-2.371) (-4.646) (-4.638) (-5.884) (-5.921) 

Constant 
-3.710** -3.331** -3.518** -3.183* -5.481*** -4.854** -5.891** -6.646** 0.394 0.575 -11.30*** -10.60*** -4.236*** -3.901*** -3.800** -3.585** -3.304*** -3.097*** 

(-2.574) (-2.078) (-2.182) (-1.861) (-2.747) (-2.431) (-2.081) (-2.341) (0.407) (0.589) (-2.806) (-2.747) (-3.084) (-2.733) (-2.462) (-2.318) (-2.982) (-2.678) 

Observations 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 

Pseudo R-squared 0.170 0.140 0.180 0.167 0.134 0.141 0.332 0.330 0.142 0.144 0.365 0.369 0.255 0.248 0.164 0.163 0.180 0.167 

z-statistics in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix 1. Number of NIS by habitat type  
Marine habitats 80 
Estuarie habitatas 120 
Lake habitats 138 
Water courses 178 
Wetlands 219 
Riparian zones 244 
Coastland 171 
Urban areas 277 
Agricultural areas 297 
Ruderal/disturbed 407 
Planted forests 241 
Natural forests 357 
Scrub/shrublads 207 
Range/grasslands 215 
Tundra 15 
Desert 28 
Ice 1 
Host 34 
Vector 11 
Riverine forest/freshwater 1 

 

Appendix 2. Number of NIS by organism type  

Bryozoan (phylum) 5 
Fungus (kingdom) 20 
Millipede (class) 1 
MiCro-orgaism (domain) 20 
Arachnid (class) 4 
Insects (class) 86 
Centipede )ordine) 1 
Flatworm (phylum) 1 
Nematoda (phylum) 1 
Mollusc (phylum) 32 
Algae (polyphiletic) 12 
Annelide (phylum) 9 
Tunicate 5 
Sponge 2 
Coral 2 
Comb jelly 1 
Jellyfish 1 
Crustacean 19 
Sea star 2 
Fish 57 
Amphibian 11 
Reptile 33 
Bird 31 
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