ISSN: 2039-4004

Via Po, 53 – 10124 Torino (Italy) Tel. (+39) 011 6704043 - Fax (+39) 011 6703895 URL: http://www.de.unito.it

WORKING PAPER SERIES

Purchases of cars and CO₂ emissions

Locatelli M., Rasmussen I. and Strøm S.

Dipartimento di Economia "S. Cognetti de Martiis"

Working paper No. 01/2011

26/01/2011

Purchases of cars and CO₂ emissions

by Marilena Locatelli, Ingeborg Rasmussen and Steinar Strøm

Abstract

A conditional logit model is estimated on Norwegian data for 2010. The data contains all purchases of cars for the period January to July. The estimates imply that taxes on CO₂ emission have a negative impact on the choice of car and the model is used in simulations to demonstrate how purchases of cars can be shifted to types of car with lower emissions. We demonstrate that the total

expected emission of CO₂ is reduced when taxes on CO₂ increases.

JEL: B21, Q58.

Keywords: purchases of cars, CO₂ emission, microdata.

Addresses:

Marilena Locatelli, University of Turin, Department of Economics, Turin, email: marilena.locatelli@unito.it

Ingeborg Rasmussen, Vista Analyse AS, Oslo, email: ingeborg.rasmussen@vista-analyse.no

Steinar Strøm, Vista Analyse AS, Oslo, University of Turin, Department of Economics, Turin, email:

steinar.strom@econ.uio.no

1

1 Introduction

The object of this paper is to investigate the choice of cars under different tax regimes on CO₂ emissions and on other car characteristics. We have had access to all purchases of cars in Norway in the period January-July 2010. We have sorted all the purchases according to the potential emissions of CO₂. These emissions stem from characteristics of the cars as well as from the use of fuel and how much the cars are used. The taxes are in part related to characteristics of the cars and on the use of fuel. We have assumed a standard driving length a year throughout the life of the car.

The reason for doing this study is that the Norwegian government likes to know whether and to what extent the different types of CO_2 emission taxes affect the purchases of cars and if they can use the taxes to reduces substantially the emissions of CO_2 .

The paper is organized as follows. In the next Section, the models of the choice of car given the segment, and the choice of segment are explained. The data used in estimations are described in Section 3. The empirical specifications and estimation results are discussed in Section 4. In Section 5 we compare predictions and observed market shares while in Sections 6 we investigate some policy simulations, and changes of purchases of cars in and between car segments. Section 7 concludes. Some detailed tables upon the estimations and simulations are presented in Appendix A and B.

2 The model

We have divided the market into two markets: Big cars and smaller cars.

In the market for big cars we have three different segments of cars: sport cars, terrain cars and multiple cars. In each of these segments there is a varying number of types of cars.

In the market for smaller cars we have two segments: Small cars and medium cars.

In each segment the cars are sorted with respect to potential emission of CO₂ measured in g/km. The range of CO₂ interval is 2 g/km.

2.1 BIG cars

Within each segment the agent is assumed to choose a car that maximizes his or her utility. The choice categories, or alternatives, are the CO₂ intervals. The utility function is assumed to be

random and extreme value distributed. The choice probabilities are thus conditional logit probabilities.

We do not observe characteristics of the buyers. The only characteristics that we observe are the characteristics of each car: Technical details like capacity (effect), cylinder volume, weight, fuel type, gear type and fuel consumption per km. Moreover we observe price, including all taxes, and the separate taxes. In Norway there are many taxes on cars. In what follows we have lumped together taxes attached to capacity, cylinder volume and weight and we denote the sum of these taxes simply as "Tax". In addition there is a tax related to the potential emission of CO₂, which we denote "CO₂ tax". Both "Tax" and "CO₂ tax" vary across the CO₂ intervals. The reason why "Tax" does this is that CO₂ emissions are related to weight, cylinder volume and capacity. In the deterministic part of the random utility function these two tax variables, relative to the net price (net of taxes), are included. We expect that the higher these tax/price ratios are the less likely it is that cars with high potential emissions of CO₂ will be chosen. In addition we also include "Fuel cost", which also contain tax on fuels. One component of this tax is a tax on CO₂ emissions. In 2010 it was NOK 0.86 per liter gasoline (NOK 0.58 per liter diesel). We thus expect that the higher the fuel costs is the less likely it is that a car with a high potential emission of CO₂ will be chosen.

Let subscript i denote a car of type i (that is, CO₂ emission category i) and let s denote the segment. Let I_s denote the number of types of cars (CO₂ intervals) in segment s.

The conditional logit probabilities, given that segment s is chosen, are given by

(1)
$$\varphi_{is} = \frac{\exp\left[b_{1s} \frac{Tax_{is}}{Netprice_{is}} + b_{2s} \frac{CO_2 Tax_{is}}{Netprice_{is}} + b_{3s} Fuelcost_{is}\right]}{\sum_{j=1}^{I_s} \exp\left[b_{1s} \frac{Tax_{js}}{Netprice_{js}} + b_{2s} \frac{CO_2 Tax_{js}}{Netprice_{js}} + b_{3s} Fuelcost_{js}\right]}; \quad i=1,2,,,I_s; s=1,2,3$$

The agent chooses that segment that gives him (or her) the highest expected consumer surplus. The segment choice probabilities, denoted P_s, is then given by

(2)
$$P_s = \frac{\exp(Y_s + \alpha_s Z)}{\sum_{k=1}^{3} \exp(Y_k + \alpha_k Z)}; s = 1,...,3,$$

where

(3)
$$Y_{s} = \ln \sum_{j=1}^{I_{s}} exp \left[b_{1s} \frac{Tax_{js}}{Netprice_{js}} + b_{2s} \frac{CO_{2} Tax_{js}}{Netprice_{js}} + b_{3s} Fuelcost_{js} \right]$$

Z is the change in the Oslo stock exchange during the considered period of 2010.

2.2 Small cars

The model is formally the same, with the exception that in this market we have specified two segments: Small cars and compact cars.

3 The data

The data used in this study come from "Opplysningsrådet for veitrafikk AS" (OFVAS), Norway and include CO₂ emissions and different taxes on cars in Norway and consist of a sample of two different markets: Big and small cars.

In the following Table 1 we provide the description of the variables used in the estimation while the summary statistics are provided in Table 2 for big cars and in Table 3 for smaller cars.

Tax is measured in NOK as well as netprice. Thus the Tax/netprice is the ratio of tax to the netprice.

The same also is the case for the CO₂Tax/netprice. Note that the Tax could exceed the netprice.

The change in the Oslo stock exchange was 9.05 percentage points during the considered period in 2010.

Table 1. Description of variables.

Variables	Description
Segment	Discrete variable from 1 to 3 for big cars and from 1 to 2 for small cars
category	CO ₂ emission (g/km).
pollution	dummy variable equal to 1 if car belongs to a certain CO ₂ category, 0 otherwise
tax_netprice	retprice _{is}
CO ₂ _netprice	CO ₂ Tax _{is} netprice _{is}
fuelcost	Fuel cost in NOK per km

In the market for big cars (Table 2), the segments are three, and the emissions (see the variable *category*) range from 134 to 388.

Table 2. Descriptive statistics - Market BIG cars

Variable	Obs	Mean	Std. Dev.	Min	Max
category, g/km	599926	197.2722	44.49391	134	388
pollution	599926	0.022893	0.149562	0	1
tax_netprice	599926	1.037293	0.510917	0.442725	3.629107
CO ₂ _netprice	599926	0.443527	0.373151	0.049116	1.884805
fuelcost	599926	0.919655	0.264962	0.575148	2.124283

In the market small cars (Table 3) the variable *category* ranges from 86 to 208. The negative values of the variable CO_2 _netprice refer to a case in which drivers have a reimbursement for low emissions.

Table 3. Descriptive statistics - Market SMALL cars

Variable	Obs	Mean	Std. Dev.	Min	Max
category	2252477	149.1919	28.8885	86	208
pollution	2252477	0.0239297	0.1528301	0	1
tax_netprice	2252477	0.6400043	0.2344144	0.2612324	1.960286
CO ₂ _netprice	2252477	0.1729871	0.1900422	-0.1667797	0.8321599
fuelcost	2252477	0.7219793	0.1828173	0.3734172	1.122366

Estimates

In the following Subsections 4.1 we report the results of the maximum likelihood estimation of eq. (1), carried out with maximum likelihood conditional logit, respectively for big cars and for small cars. The coefficients have in general the expected signs and are significant.

b) segment 2 (terrain cars)

4.1 Market BIG

a) segment 1 (sport cars)

In Table 4 we report the estimation of eq. (1) for segment 1, 2 and 3.

Table 4. Estimate eq. (1) - market BIG

Number of obs	= 578	Number of obs = 11958
LR chi2(3)	= 319.25	LR chi2(3) = 3324.49
Prob > chi2	= 0.0000	Prob > chi2 = 0.0000
Pseudo R2	= 0.0790	Pseudo R2 = 0.0361
Log likelihood	= -1861.3578	Log likelihood = -44377.818
	Coef. Std. Err. t-value	Coef. Std. Err. t-value
tax_netprice	-1.54827 0.224008 -6.91	tax_netprice -0.27501 0.051281 -5.36
CO ₂ _netprice	-2.84268 0.724362 -3.92	CO ₂ _netprice -0.61160 0.073622 -8.31
fuelcost	-0.39538	fuelcost -1.42977 0.104691 -13.66

c) segment 3 (multiple cars)

Number of obs = 1160

LR chi2(3) = 1522.35

Prob > chi2 = 0.0000

Pseudo R2 = 0.2367

<u>Log likelihood</u> = -2455.0294

pollution	Coef.	Std. Err.	t-value
tax_netprice	-4.08411	0.315366	-12.95
CO ₂ _netprice	0.09248	1.748783	0.05
fuelcost	-4.13374	1.759931	-2.35

4.2 Market SMALL

In Table 5 we include the maximum likelihood estimation of eq. (1) for segment 1, and 2

Table 5. Estimate eq. (1) - market SMALL

a) segment 1 (small cars)

Number of obs = 11352

LR chi2(3) = 5950.84

Prob > chi2 = 0.0000

Pseudo R2

Log likelihood = -37384.889

= 0.0737

pollution	Coef.	Std. Err.	Z
tax_netprice	-9.0333	0.226847	-39.82
CO ₂ _netprice	-0.84391	0.250610	-3.37
fuelcost	-0.19314	0.188629	-1.02

b) segment 2 (compact cars)

Number of obs = 19998

LR chi2(2) = 12862.16

Prob > chi2 = 0.0000

Pseudo R2 = 0.0764

Log likelihood = -77748.992

pollution	Coef.	Std. Err.	Z
CO ₂ _netprice	-3.05071	0.151038	-20.2
fuelcost	-1.5748	0.144771	-10.88

4.3 Elasticities in each segment and time

In order to evaluate the economic magnitude of the tax effects, we have calculated the direct demand elasticities according to the following equations.

(4)
$$E_{j2s} = b_{2s}(1-\varphi_{js})\frac{CO_2Tax_{js}}{Netprice_{js}}$$

(5)
$$E_{j3s} = b_{3s}(1-\phi_{js}) \text{ fuelcost}_{js}$$

where:

- E_{j2s} is the elasticity, for category j and segment s, of the probability ϕ_{js} with respect to the variable $tax_netprice$ (i.e. $\frac{CO_2Tax}{Netprice}$) and b_{2s} is the estimated coefficient of eq. (1);
- E_{j3s} is the elasticity, for category j, and segment s, of the probability Φ_{js} with respect to the variable *fuelcost* (i.e. fuelcost NOK per km), and b_{3s} is the estimated coefficient of eq. (1).

In Table A1 of Appendix A, we include, for market big and for each category *j*, the estimated probabilities (phi_j_1_2010, phi_j_2_2010, phi_j_3_2010) and the elasticities e_j2_1, e_j3_1 for segment 1, e_j2_2, e_j3_2 for segment 2, and e_j2_3, e_j3_3 for segment 3.

The elasticity values have the correct signs and are increasing numerically with category j, that is with the emissions of CO_2 . Segment 3 (multiple cars) have in general higher elasticities numerically than segment 1 and 2.

In Table A2 we include the corresponding variables for market small. For segment 2 we have only computed e j3 2 since the variable *tax_netprice* has not been considered in the model.

5 Predictions and observed market shares

Figure 1 and Figure 2 compare observed and predicted market share respectively for the considered segments and for market BIG and market SMALL. We notice that the model predictions capture the overall trend, with the exception of some peaks that are present in the observed market shares.

Figure 1. Observed and predicted market share given the segment - Market BIG

Figure 2. Observed and predicted market share given the segment - Market SMALL

6 Policy simulations, changes in and between car segments

Using the estimates of eq. (1), we did some policy simulations to verify the changes in car choice probabilities in and among segments, both in market BIG and in market SMALL. In particular we want to show the impact on:

i - the probability of the choice of car given the segment ($\phi_{ist}\,$, Eq.1),

ii - the probability of the choice of segment (P_{st}, Eq.2-4),

iii - the global impact $\sum_{s} \sum_{i=1}^{I_{st}} \varphi_{ist} P_{st} u_{ist}$, where u_{ist} is the average emission of CO₂ in category i.

- a) doubling and tripling CO₂ Tax values
- b) increasing *fuelcost* per km by 20,40 and 60 percent

In the following Subsections 6.1, 6.2 and 6.3 we consider points i, ii, and iii for market big. The market small is considered in Subsections 6.4, 6.5, and 6.6.

6.1 Market BIG – changes in probability of the choice of car given the segment

In Tables B1, B2 and B3 of Appendix B, we report the impact of the policy simulations listed at point i, (cases a) and b)) for segment 1 (sport cars), 2 (terrain cars), and 3 (multiple cars), respectively. In general, for segment 1 and 2, we observe that the probabilities for the very low emission categories increase, whereas the probabilities for higher emission categories decrease. This fact may be interpreted as a shift from high emission to low emission categories caused by an increase in tax on CO₂ emissions. This effect is less evident in the case of *fuelcost*. Segment 4 appears more rigid to variations in taxes.

In the following Figure 3 and Figure 4, we report the impacts of the different simulations listed before.

Figure 3. Choice probability ϕ_{is} of car by category given the segment: without any increase, doubling, and tripling CO_2Tax (market BIG)

Figure 4. Choice probability ϕ_{is} of car by category given the segment: without any increase, with the increase of 20, 40 and 60 percent in *fuelcost* (market BIG)

6.2 Market BIG – changes among car segments

To investigate the impact on the choice of segments (point ii above) we calibrate eq. 2 so that the choice probabilities of segments fit the market shares of the segments.

To do that we have to compute the α 's so that P_{st} of eq. 2 is equal to the observed market share that is we have to solve the following system of three nonlinear equations:

(6)
$$\frac{\text{number of cars in segment s}}{\text{all sold big cars}} = \frac{\exp(Y_s + \alpha_s Z)}{\sum_{k=1}^{3} \exp(Y_k + \alpha_k Z)}; s = 1, 2, 3$$

with $\alpha_3=0$ and Z=9.05

The observed market share for sector BIG cars, are the following

Resorting to MATLAB to solve the above system, we find the following α 's:

$$\alpha_1 = -0.5717$$
 $\alpha_2 = -0.3243$

This means that the stock exchange indicator favors multiple cars relative to sports car and terrain cars.

In Table 6 we include the impact on the choice probability of segment for the different simulation policies (point ii).

We observe that for segment 1 and 2 the probability decrease when doubling CO₂Tax (P_st_d) or tripling CO₂Tax (P_st_t), while for segment 3 there is an increase. We observe a different trend when we increase *fuelcost* by 20, 40 and 60 percent: by increasing *fuelscost* there is an increase in the probability for segments 1 and 2, whereas we predict a decrease for segment 3.

Table 6. Choice probability of segment: without any increase (P_st), doubling CO₂tax (P_st_d), tripling CO₂Tax (P_st_t), increasing fuelcost by 20, 40 and 60 percent (market BIG)

Segment	gment P_st P_st_d		t P_st P_st_d		t P_st P_st_		P_st_t	P_st +20% fuelcost	P_st +40% fuelcost	P_st +60% fuelcost
1	0.0422	0.0322	0.0255	0.0503	0.0594	0.0696				
2	0.8730	0.8666	0.8562	0.8860	0.8931	0.8952				
3	0.0848	0.1011	0.1183	0.0637	0.0475	0.0353				

6.3 Market BIG – global impact changes

The following Table 7 includes the total impact over segment 1, 2, and 3 of the different simulations (point iii) on total expected emission of CO₂. We always predict a decrease when doubling CO₂tax (S_d), tripling CO₂avgift (S_t), or increasing *fuelcost* by 20 (S_20), 40 (S_40), and 60 percent (S_60).

Table 7. Expected total emission $S = \sum_{s=1,2,4} \sum_{i=1}^{I_{st}} \varphi_{ist} P_{st} u_{ist}$ doubling CO_2Tax (S_d), tripling CO_2tax (S_t), increasing fuelcost by 20 (S_20), 40 (S_40), and 60 percent (S_60) - (market BIG)

market_BIG	S	S_d	S_t	S _20 (+20% fuelcost)	S_40 (+40% fuelscost)	S_60 (+60% fuelscostst)
CO ₂ g/km	174.9802	171.2378	168.2488	174.0372	173.0199	171.96

6.4 Market SMALL – changes in probability of the choice of car given the segment

In Appendix B, Tables B4, and B5 we report the impact of the policy simulations listed at point i, (cases a) and b)) for segment 1 (small cars) and segment 2 (compact cars), respectively. As for market big cars, we observe that the probabilities, for the very low emission categories, increase when taxes are increased while for higher emission categories the probabilities go down.

Segment 1 appears more rigid to variations in taxes on fuel cost.

In the following Figure 5 and Figure 6, we report the impacts of the different simulations listed before for market big.

Figure 5. Choice probability ϕ_{is} of car by category given the segment: without any increase, doubling, and tripling CO_2Tax (market SMALL)

Figure 6. Choice probability φ_{ist} of car by category given the segment: without any increase, with the increase of 20, 40 and 60 percent in fuelcost (market SMALL)

6.5 Market small - changes among car segments

To investigate the impact on the choice of segments we have to compute the α 's so that P_s of eq. 2 equals the observed market share, that is we have to solve a nonlinear equations similar to (eq. 6) above, which yields $\alpha_1=0.22$. Thus the stock exchange indicator favors small cars relative to compact cars.

Table 8 gives the impact on the segment probabilities of different simulation policy alternatives.

We observe that for segment 1 (small cars) the probabilities increase when doubling the CO₂Tax (P_st_d), tripling CO₂tax (P_st_t) or increasing *fuelcost* by 20, 40 and 60 percent. The opposite happens for segment 2 (compact cars) the probabilities decrease. Thus there is a shift from compact cars towards small cars.

Table 8. Choice probability of segment: without any increase (P_st), doubling CO₂Tax (P_st_d), tripling CO₂Tax (P_st_t), increasing fuelcost by 20, 40 and 60 percent (market SMALL)

Segment	P_st	P_st_d	P_st_t	P_st +20% fuelcost	P_st P_st % fuelcost +40% fuelcost	
1	0.33900	0.36956	0.37695	0.37670	0.41544	0.45477
2	0.66100	0.63044	0.62305	0.62330	0.58456	0.54523

6.6 Market SMALL – global impact changes

Table 9 reports the results of increasing taxes on the total expected emissions of CO₂ in the market for small cars. We can observe that there is a decrease in the total expected emissions when doubling CO₂Tax (S_d), or tripling CO₂Tax (S_t), and there is a decrease also when increasing *fuelcost* by 20 (S 20), 40 (S 40), and 60 percent (S 60).

Table 9. Expected total emission $S = \sum_{s=1}^{2} \sum_{i=1}^{I_{st}} \varphi_{ist} P_{st} u_{ist}$ doubling CO_2Tax (S_d), tripling CO_2Tax (S_t), increasing fuelcost by 20 (S_20), 40 (S_40), and 60 percent (S_60) - (market BIG)

market_SMALL	S	S_d	S_t	S _20 (+20% fuelcost)	S_40 (+40% fuelcost)	S_60 (+60% fuelcost)
CO ₂ g/km	125.249	118.9588	114.9698	124.042	122.9217	121.8902

7 Conclusions

A conditional logit model is estimated on Norwegian data for 2010. The data contains all purchases of cars for the period January to July. The estimates imply that taxes on CO₂ emission have a negative impact on the choice of car and the model is used in simulations to demonstrate how purchases of cars can be shifted to types of car with lower emissions. We demonstrate that the total expected emission of CO₂ is reduced when taxes on CO₂ increases.

Appendix A

Table A1. Category probabilities and elasticities given segment - year 2010- Market BIG

	Segn	nent 1 (sport ca	rs)	Segme	Segment2 (terrain cars)			Segment 3 (multiple cars)		
category_j g/km	phi_j_1_2010	Elasticity: e_j2_1	Elasticity: e_j3_1	phi_j_2_2010	Elasticity: e_j2_2	Elasticity: e_j3_2	phi_j_4_2010	Elasticity: e_j2_4	Elasticity: e_j3_4	
134	0.065474	-0.071065	-0.212514				0.223340	-0.227629	-1.860300	
136	0.050251	-0.099034	-0.220811	0.041432	-0.017492	-0.800022				
138	0.079240	-0.083914	-0.217197	0.039162	-0.019546	-0.819606				
140				0.040913	-0.025935	-0.823998	0.223334	-0.276310	-1.929215	
144	0.059716	-0.150645	-0.230921				0.185027	-0.380388	-2.096667	
146	0.047782	-0.178553	-0.282401	0.036395	-0.034673	-0.869273				
148	0.053366	-0.193200	-0.294334	0.034116	-0.037549	-0.920698				
150				0.036372	-0.031403	-0.887035				
152	0.055776	-0.171010	-0.271796	0.034395	-0.032814	-0.906632	0.113680	-0.453337	-2.390302	
154	0.037579	-0.257903	-0.321487	0.035040	-0.036861	-0.913178	0.050180	-0.592608	-2.595259	
156				0.033974	-0.043100	-0.930740				
158	0.045635	-0.185150	-0.281171	0.031809	-0.049932	-0.944709	0.052633	-0.703648	-2.672600	
160	0.056674	-0.190036	-0.257739							
164	0.039310	-0.258157	-0.341055	0.032020	-0.042944	-0.974313	0.016322	-0.871090	-2.879755	
166	0.050874	-0.299939	-0.333230	0.029031	-0.058829	-0.995089				
168	0.031130	-0.283266	-0.349452	0.029532	-0.060202	-1.006487				
170				0.029812	-0.054868	-1.012150	0.006130	-1.136143	-2.997760	
172	0.056097	-0.204775	-0.344010	0.028464	-0.054182	-1.025668	0.005923	-1.181986	-3.033661	
174	0.026823	-0.244762	-0.345107	0.027639	-0.055591	-1.042076	0.041609	-0.870316	-2.975770	
176				0.019678	-0.077857	-1.329123	0.023724	-0.924805	-3.048623	
178	0.021774	-0.232271	-0.324452	0.026525	-0.058958	-1.083223				
180	0.042271	-0.352235	-0.375249	0.025768	-0.073926	-1.078081	0.017221	-1.172840	-3.156116	
182				0.019936	-0.099527	-1.241371				
184	0.018401	-0.269055	-0.390975	0.026559	-0.059952	-1.100119				
186				0.023669	-0.095751	-1.114531				
188				0.021828	-0.100985	-1.162294	0.001487	-1.473955	-4.271100	
190				0.020677	-0.110978	-1.196500				
192	0.017651	-0.467670	-0.408286	0.019730	-0.108612	-1.228968				
194				0.017128	-0.108823	-1.383191				
196				0.015035	-0.086257	-1.518913				
198	0.011088	-0.632310	-0.425999	0.020806	-0.105839	-1.195642	0.026088	-1.242376	-3.438677	
204				0.012036	-0.203216	-1.581111				
208				0.010823	-0.217610	-1.610583				
210	0.003889	-0.545642	-0.452819	0.010969	-0.205149	-1.625829				

212	0.016366	-0.719128	-0.451406						
214	0.022780	-0.512739	-0.452693	0.019464	-0.104544	-1.287709			
216	0.005862	-0.641261	-0.464834	0.016794	-0.139784	-1.306744	0.013264	-2.076900	-3.799087
218				0.016914	-0.113902	-1.321222			
220				0.015137	-0.105653	-1.329654			
222				0.009043	-0.230027	-1.729837			
224	0.003630	-0.602839	-0.483133	0.015481	-0.139119	-1.383307	0.000041	-3.924827	-5.069373
228	0.009344	-0.931284	-0.491085	0.009541	-0.161913	-1.767735			
234				0.005577	-0.327370	-1.821515			
238				0.008713	-0.290716	-1.450868			
242				0.011662	-0.151672	-1.473846			
244				0.008648	-0.195557	-1.649602			
246				0.008753	-0.246968	-1.502516			
250	0.028441	-0.302811	-0.527185						
256	0.001357	-0.981172	-0.553411						
260	0.011554	-0.476592	-0.556319						
264	0.009515	-0.568620	-0.566043						
270				0.007836	-0.106600	-2.032256			
278									
286	0.010157	-0.499485	-0.612816						
290				0.004423	-0.516055	-1.777902			
294				0.009686	-0.163215	-1.786737			
348				0.001059	-0.438826	-2.721227			
368	0.005511	-0.860300	-0.835275						
388	0.004685	-0.92232809	-0.83596858						
	Σ phi_j_1_2010			Σ phi_j_2_2010			Σ phi_j_4_2010		
	1			1			1		

Table A2. Category probabilities and elasticities given segment - year 2010- Market SMALL

	segme	nt 1(small c	ars)	segment 2 (co	mpact cars)
category_j	h: : 1 2010	elasticity	elasticity		elasticity
g/km	phi_j_1_2010	e_j2_1	e_j3_1	phi_j_2_2010	e_j3_2
86	0.0602265	1.4158354	-0.0677773		
88	0.0582452	1.3347057	-0.0694816		
96	0.0696072	0.9186579	-0.0740422		
98	0.0472327	0.9145822	-0.077782	0.0577716	-0.63050895
102	0.023214	1.2145431	-0.1063859	0.0545724	-0.65182093
104				0.0533347	-0.66547173
106	0.0616126	0.5288865	-0.0832353	0.0493667	-0.68753789
108	0.0534476	0.4680574	-0.0855001	0.0473041	-0.70190873
110	0.0521804	0.446855	-0.0864531		
112	0.0624843	0.2985041	-0.0871633	0.044564	-0.72348615
114	0.0287938	0.2733474	-0.0934869	0.042402	-0.74391057
116	0.0344954	0.1387363	-0.0935839	0.0412518	-0.75380951
118	0.0309082	0.0664543	-0.1166265	0.039502	-0.76884277
120	0.026961	-0.0016762	-0.1099361		
122	0.0286551	-0.1498377	-0.1253085	0.0343087	-0.85189418
124	0.0257229	-0.2857524	-0.1278437	0.0339801	-0.81951427
126	0.0291001	-0.4577084	-0.1243856	0.0309648	-0.89073943
128	0.0341749	-0.4817678	-0.130685	0.0309428	-0.85639773
130	0.01811	-0.5273995	-0.1058151	0.0307333	-0.85169961
132	0.0332686	-0.7912152	-0.135812	0.0222431	-1.0939105
134	0.0502879	-0.7417079	-0.1350327	0.0210934	-1.1076019
136	0.032915	-0.9665344	-0.1400982	0.0245179	-0.95202799
138	0.0316298	-1.1369777	-0.1423091	0.0226199	-0.99003507
140	0.0122873	-1.5270202	-0.1462419	0.024128	-0.92346561
142	0.0035232	-1.3659748	-0.1506782	0.0218783	-0.98768045
144	0.0058396	-1.479407	-0.1513792	0.0206144	-0.99645239
146	0.0170639	-1.7269394	-0.1518158	0.0170877	-1.1142752
148	0.014808	-1.6925668	-0.1541807	0.0177177	-1.0757382
150	0.0066439	-1.5150358	-0.1575591	0.0183349	-0.99999863
152				0.0143954	-1.1533659
154	0.0142605	-2.1988368	-0.1608411	0.0148166	-1.1448947
156	0.0003963	-2.3219714	-0.1648921	0.0173315	-1.0570581

1				1	1
158	0.006251	-2.3502911	-0.1668624	0.0123828	-1.2270779
160	0.0112706	-2.079715	-0.1672803	0.0154546	-1.0647694
162				0.010748	-1.3828096
164	0.0025796	-2.8367992	-0.1732708	0.0102693	-1.3821258
166				0.0085727	-1.4022729
168	0.0040888	-2.5590202	-0.1386984	0.0078648	-1.4408751
170				0.0087644	-1.4528851
172				0.0067659	-1.4729417
174				0.0067039	-1.4636732
176				0.0086056	-1.3236193
178				0.0070755	-1.4868367
180	0.0077144	-4.0097055	-0.1888672	0.0101637	-1.2043028
182				0.008458	-1.2197824
184				0.0058584	-1.4067822
186				0.008102	-1.2489539
188				0.0038685	-1.5385931
192				0.0026452	-1.6510353
194				0.0024074	-1.6715911
196				0.0018232	-1.6954274
198				0.0023186	-1.6189531
204				0.0011597	-1.7654498
208				0.0022099	-1.4028214
	Σ phi_i_I_2010			Σ phi_i_II_2010	
	1			1	

APPENDIX B: simulations

Table B1. Segment 1: Choice probability of car by category: without any increase (phi_j_1_2010), doubling CO₂ Tax (phat_doubling), tripling CO₂Tax (phat_triple); increasing fuelcost by 20, 40 and 60% (market BIG - Year 2010)

				Segment 1 (sport	t cars)	
category_j	phi_i_1_2010	phat_doubling CO ₂ Tax	phat_triple CO ₂ Tax	phi 1.2 *fuelcost	phi 1.4 *fuelcost	phi 1.6 *fuelcost
134	0.065474	0.088042	0.111660	0.066903	0.068336	0.069772
136	0.050251	0.064158	0.077259	0.051295	0.052340	0.053385
138	0.079240	0.103640	0.127850	0.080832	0.082422	0.084011
144	0.059716	0.068801	0.074763	0.060797	0.061874	0.062944
146	0.047782	0.052361	0.054116	0.048155	0.048510	0.048849
148	0.053366	0.056725	0.056870	0.053627	0.053868	0.054088
152	0.055776	0.061842	0.064672	0.056308	0.056823	0.057319
154	0.037579	0.035524	0.031673	0.037589	0.037584	0.037563
158	0.045635	0.049415	0.050467	0.046008	0.046366	0.046708
160	0.056674	0.060535	0.060984	0.057383	0.058077	0.058756
164	0.039310	0.037110	0.033041	0.039156	0.038987	0.038803
166	0.050874	0.044032	0.035944	0.050714	0.050534	0.050335
168	0.031130	0.028139	0.023990	0.030973	0.030804	0.030624
172	0.056097	0.058238	0.057024	0.055771	0.055425	0.055059
174	0.026823	0.026135	0.024017	0.026720	0.026606	0.026483
178	0.021774	0.021770	0.020529	0.021790	0.021797	0.021796
180	0.042271	0.033269	0.024695	0.041796	0.041310	0.040814
184	0.018401	0.017201	0.015165	0.018171	0.017937	0.017698
192	0.017651	0.011387	0.006929	0.017370	0.017086	0.016801
198	0.011088	0.005300	0.002389	0.010879	0.010669	0.010459
210	0.003889	0.002199	0.001173	0.003797	0.003706	0.003616
212	0.016366	0.006611	0.002518	0.015967	0.015571	0.015178
214	0.022780	0.013441	0.007480	0.022204	0.021635	0.021072
216	0.005862	0.002773	0.001237	0.005709	0.005557	0.005408
224	0.003630	0.001848	0.000887	0.003523	0.003418	0.003315
228	0.009344	0.002571	0.000668	0.009049	0.008759	0.008476
250	0.028441	0.024813	0.020417	0.027286	0.026168	0.025085
256	0.001357	0.000345	0.000083	0.001299	0.001242	0.001188
260	0.011554	0.007371	0.004435	0.011040	0.010545	0.010068

264	0.009515	0.005127	0.002606	0.009076	0.008654	0.008248
286	0.010157	0.006218	0.003590	0.009597	0.009064	0.008557
368	0.005511	0.001741	0.000519	0.004982	0.004502	0.004067
388	0.004685	0.001322	0.000352	0.004235	0.003827	0.003457
	Σ phi_j_1_2010					
	1.00	1.00	1.00	1.00	1.00	1.00

Table B2. Segment 2: Choice probability of car by category: without any increase (phi_j_2_2010), doubling CO_2Tax (phat_doubling), tripling CO_2Tax (phat_triple); increasing fuelcost by 20, 40 and 60% (market BIG - Year 2010)

		S	Segment 2 (ter	rrain cars)		
category_j	phi_j_2_2010	phat_doubling CO ₂ Tax	phat_triple CO ₂ Tax	phi 1.2 *fuelcost	phi 1.4 *fuelcost	phi 1.6 *fuelcost
136	0.041432	0.0472534	0.0530642	0.0440083	0.0466221	0.0492702
138	0.039162	0.0444566	0.0496914	0.041444	0.0437441	0.0460588
140	0.040913	0.0457572	0.050389	0.0432435	0.0455876	0.0479409
146	0.036395	0.0399038	0.0430779	0.03814	0.0398634	0.0415627
148	0.034116	0.0371646	0.0398636	0.0353875	0.0366104	0.0377827
150	0.036372	0.0401801	0.0437048	0.0379751	0.0395453	0.0410794
152	0.034395	0.037879	0.0410743	0.0357795	0.037122	0.0384204
154	0.035040	0.0382283	0.0410661	0.0363957	0.0377053	0.0389663
156	0.033974	0.0365406	0.0386971	0.0351681	0.0363089	0.0373948
158	0.031809	0.0336869	0.0351272	0.0328463	0.0338287	0.034755
164	0.032020	0.0344582	0.0365122	0.0328612	0.0336361	0.034345
166	0.029031	0.0301342	0.0307989	0.0296844	0.0302735	0.0307986
168	0.029532	0.0305563	0.0311301	0.0301232	0.0306456	0.0311007
170	0.029812	0.0312238	0.0322002	0.0303711	0.0308599	0.0312798
172	0.028464	0.0298646	0.0308522	0.0289261	0.0293185	0.0296434
174	0.027639	0.028908	0.0297711	0.0279974	0.0282866	0.0285088
176	0.019678	0.0195885	0.0191995	0.0188327	0.0179762	0.0171167
178	0.026525	0.0275346	0.0281435	0.0266496	0.0267048	0.0266946
180	0.025768	0.025853	0.0255397	0.0259209	0.0260065	0.0260285
182	0.019936	0.0188915	0.0176271	0.0194222	0.0188726	0.0182936
184	0.026559	0.0275072	0.0280515	0.026591	0.0265536	0.0264512
186	0.023669	0.0226036	0.0212545	0.0236435	0.0235564	0.0234121
188	0.021828	0.0206078	0.0191565	0.0216024	0.0213228	0.0209952
190	0.020677	0.019088	0.0173502	0.0203262	0.019929	0.0194916

192	0.019730	0.0183163	0.0167425	0.0192718	0.0187749	0.0182459
194	0.017128	0.0159033	0.0145394	0.0162239	0.0153274	0.014445
196	0.015035	0.0146971	0.0141463	0.0138623	0.0127479	0.0116944
198	0.020806	0.0194322	0.0178699	0.0204563	0.0200594	0.019622
204	0.012036	0.0090475	0.0066967	0.0109686	0.00997	0.0090401
208	0.010823	0.0078812	0.0056508	0.0098086	0.0088661	0.0079945
210	0.010969	0.0082142	0.0060565	0.0099102	0.00893	0.0080269
214	0.019464	0.0182376	0.0168262	0.0187863	0.0180852	0.0173675
216	0.016794	0.0145397	0.0123947	0.0161582	0.0155061	0.0148439
218	0.016914	0.0155258	0.0140329	0.0162252	0.0155241	0.0148169
220	0.015137	0.0141628	0.0130477	0.0145031	0.0138594	0.0132118
222	0.009043	0.00641	0.0044736	0.0080056	0.0070684	0.0062256
224	0.015481	0.0134293	0.0114701	0.0146709	0.0138664	0.013074
228	0.009541	0.0078783	0.0064053	0.0083803	0.0073416	0.0064158
234	0.005577	0.0031856	0.0017915	0.004853	0.0042117	0.0036462
238	0.008713	0.0053905	0.0032838	0.0081604	0.0076232	0.0071038
242	0.011662	0.009846	0.0081853	0.0108622	0.0100911	0.0093519
244	0.008648	0.0066243	0.0049959	0.007782	0.0069841	0.0062526
246	0.008753	0.0059735	0.0040141	0.0081128	0.0075	0.0069165
270	0.007836	0.0073287	0.0067492	0.0065291	0.0054261	0.0044984
290	0.004423	0.001659	0.0006126	0.0038844	0.0034022	0.0029726
294	0.009686	0.0079738	0.0064637	0.0084742	0.007395	0.0064374
348	0.001059	0.0004735	0.0002085	0.0007709	0.0005596	0.0004053
	Σ phi_j_2_2010					
	1.00	1.00	1.00	1.00	1.00	1.00

Table B3. Segment 4: Choice probability of car by category: without any increase (phi_j_4_2010), doubling CO_2Tax (phat_doubling CO_2), tripling CO_2Tax (phat_triple); increasing fuelcost by 20, 40 and 60% (market BIG - Year 2010)

	Segment 3(multiple cars)										
category_j	phi_j_4_2010	phat_doubling CO ₂ Tax	phat_triple CO ₂ Tax	phi 1.2 *fuelcost	phi 1.4 *fuelcost	phi 1.6 *fuelcost					
134	0.223340	0.2221263	0.2209078	0.2346352	0.2457151	0.2346352					
140	0.223334	0.2224357	0.2215297	0.2305026	0.2371422	0.2305026					
144	0.185027	0.1847468	0.1844572	0.1876079	0.1896176	0.1876079					
152	0.113680	0.1136222	0.1135592	0.1124372	0.1108536	0.1124372					
154	0.050180	0.0502821	0.0503823	0.0492802	0.0482425	0.0492802					

158	0.052633	0.0528823	0.0531304	0.0507803	0.0488368	0.0507803
164	0.016322	0.0164521	0.0165829	0.0154154	0.0145131	0.0154154
170	0.006130	0.0062153	0.0063013	0.005688	0.0052609	0.005688
172	0.005923	0.0060111	0.0061006	0.0054565	0.0050111	0.0054565
174	0.041609	0.0419628	0.0423178	0.0379285	0.0344635	0.0379285
176	0.023724	0.0239471	0.0241712	0.0215491	0.0195111	0.0215491
180	0.017221	0.0174798	0.0177419	0.0153669	0.0136689	0.0153669
188	0.001487	0.0015187	0.0015513	0.0010719	0.0007703	0.0010719
198	0.026088	0.0265294	0.0269775	0.0218388	0.0182237	0.0218388
216	0.013264	0.013744	0.014241	0.0104164	0.0081543	0.0104164
224	0.000041	0.0000442	0.0000478	0.0000252	0.0000155	0.0000252
	Σ phi_j_4_2010		·			
	1.00	1.00	1.00	1.00	1.00	1.00

Table B4. Segment 1: Choice probability of car by category: without any increase (phi_j_1_2010), doubling CO_2Tax (phat_doubling), tripling CO_2Tax (phat_triple); increasing fuelcost by 20, 40 and 60% (market SMALL - Year 2010)

			segment	1 (small car)		
category_j	phi_j_1_2010	phat_doubling CO ₂ Tax	phat_triple CO ₂ Tax	phi (1.2*fuelcost)	phi (1.4 *fuelcost)	phi 1.6 *fuelcost
86	0.0602265	0.068815	0.077933		0.061142	0.061602
88	0.0582452	0.065998	0.074122	0.058668	0.059091	0.059516
96	0.0696072	0.075767	0.081745	0.070031	0.070455	0.070879
98	0.0472327	0.051281	0.055185	0.047501	0.047768	0.048036
102	0.023214	0.02588	0.028598	0.023219	0.023223	0.023226
104						
106	0.0616126	0.064462	0.066848	0.061875	0.062136	0.062396
108	0.0534476	0.055559	0.057245	0.053657	0.053866	0.054074
110	0.0521804	0.054126	0.055648	0.052376	0.052571	0.052764
112	0.0624843	0.063893	0.064757	0.062696	0.062907	0.063116
114	0.0287938	0.029342	0.029636	0.028873	0.028951	0.029028
116	0.0344954	0.034702	0.034602	0.034585	0.034674	0.034762
118	0.0309082	0.030876	0.030572	0.030844	0.030779	0.030712
120	0.026961	0.026757	0.02632	0.026945	0.026927	0.026909
122	0.0286551	0.028036	0.027187	0.028546	0.028436	0.028326
124	0.0257229	0.024842	0.023779	0.025614	0.025504	0.025394
126	0.0291001	0.02764	0.026021	0.028994	0.028888	0.028781

130 0.01811 0.017096 0.015996 0.018118 0.018125 0.018132 132 0.0332686 0.030591 0.027881 0.033066 0.032863 0.032661 134 0.0502879 0.046403 0.04244 0.049964 0.049641 0.049315 136 0.032915 0.029759 0.026667 0.032686 0.032457 0.032225 138 0.0316298 0.028134 0.024803 0.031396 0.031164 0.030931 140 0.0122873 0.010556 0.008988 0.012194 0.012101 0.012008 142 0.0035232 0.003077 0.002663 0.003494 0.003465 0.003437 144 0.0058396 0.005044 0.004318 0.00579 0.005741 0.005693 146 0.0170639 0.014373 0.012 0.016913 0.016762 0.016612 148 0.0142605 0.014279 0.004658 0.006516 0.004542 152 154 0.0142605 0.01479	1	1		i	1		
132	128	0.0341749	0.032377	0.030403	0.034002	0.033828	0.033655
134	130	0.01811	0.017096	0.015996	0.018118	0.018125	0.018132
136	132	0.0332686	0.030591	0.027881	0.033066	0.032863	0.032661
138	134	0.0502879	0.046403	0.04244	0.049964	0.049641	0.049319
140	136	0.032915	0.029759	0.026667	0.032686	0.032457	0.032229
142 0.0035232 0.003077 0.002663 0.003494 0.003465 0.003437 144 0.0058396 0.005044 0.004318 0.00579 0.005741 0.005693 146 0.0170639 0.014373 0.012 0.016913 0.016762 0.016612 148 0.014808 0.012519 0.01049 0.014671 0.014534 0.014398 150 0.0066439 0.005719 0.004879 0.00658 0.006516 0.006452 152 154 0.0142605 0.011492 0.009179 0.014109 0.01396 0.013811 156 0.0003963 0.000317 0.000251 0.000392 0.000388 0.000383 158 0.006251 0.004975 0.003924 0.006179 0.006107 0.006037 160 0.0112706 0.009191 0.007429 0.011138 0.011006 0.010876 162 164 0.0025796 0.001963 0.001481 0.002547 0.002515 0.002482 166 168 0.0040888 0.003192 0.00247 0.004065 0.004041 0.004017 170 172 174 176 178 188 180 0.0077144 0.00525 0.003541 0.007591 0.00747 0.00735 182 183 184 186 188 192 194 196 198 199 194 196 198 198 204 208 Ephijl2010 Ephijl	138	0.0316298	0.028134	0.024803	0.031396	0.031164	0.030931
144 0.0058396 0.005044 0.004318 0.00579 0.005741 0.005693 146 0.0170639 0.014373 0.012 0.016913 0.016762 0.016612 148 0.014808 0.012519 0.01049 0.014671 0.014534 0.014398 150 0.0066439 0.005719 0.004879 0.00658 0.006516 0.006452 152	140	0.0122873	0.010556	0.008988	0.012194	0.012101	0.012008
146 0.0170639 0.014373 0.012 0.016913 0.016762 0.016612 148 0.014808 0.012519 0.01049 0.014671 0.014534 0.014398 150 0.0066439 0.005719 0.004879 0.00658 0.006516 0.006452 152	142	0.0035232	0.003077	0.002663	0.003494	0.003465	0.003437
148 0.014808 0.012519 0.01049 0.014671 0.014534 0.014398 150 0.0066439 0.005719 0.004879 0.00658 0.006516 0.006452 152	144	0.0058396	0.005044	0.004318	0.00579	0.005741	0.005693
150	146	0.0170639	0.014373	0.012	0.016913	0.016762	0.016612
152	148	0.014808	0.012519	0.01049	0.014671	0.014534	0.014398
154 0.0142605 0.011492 0.009179 0.014109 0.01396 0.013811 156 0.0003963 0.000317 0.000251 0.000392 0.000388 0.000383 158 0.006251 0.004975 0.003924 0.006179 0.006107 0.006037 160 0.0112706 0.009191 0.007429 0.011138 0.011006 0.010876 162	150	0.0066439	0.005719	0.004879	0.00658	0.006516	0.006452
156	152						
158	154	0.0142605	0.011492	0.009179	0.014109	0.01396	0.013811
160 0.0112706 0.009191 0.007429 0.011138 0.011006 0.010876 162	156	0.0003963	0.000317	0.000251	0.000392	0.000388	0.000383
162	158	0.006251	0.004975	0.003924	0.006179	0.006107	0.006037
164 0.0025796 0.001963 0.001481 0.002547 0.002515 0.002482 166	160	0.0112706	0.009191	0.007429	0.011138	0.011006	0.010876
166	162						
168 0.0040888 0.003192 0.00247 0.004065 0.004041 0.004017 170	164	0.0025796	0.001963	0.001481	0.002547	0.002515	0.002482
170 172 174 176 178 180 0.0077144 0.00525 0.003541 0.007591 0.00747 0.00735 182 184 186 188 192 194 196 198 204 208 Σ phi j 1 2010	166						
172	168	0.0040888	0.003192	0.00247	0.004065	0.004041	0.004017
174 176 178 180 0.0077144 0.00525 0.003541 0.007591 0.00747 0.00735 182 184 186 188 192 194 196 198 204 208 Σ phi j 1 2010	170						
176 178 180 0.0077144 0.00525 0.003541 0.007591 0.00747 0.00735 182 184 186 188 192 194 196 198 204 208 Σ phi j 1 2010	172						
178	174						
180 0.0077144 0.00525 0.003541 0.007591 0.00747 0.00735 182	176						
182 184 186 188 192 194 196 198 204 208 Σ phi j 1 2010	178						
184 186 188 192 194 194 196 198 204 208 Σ phi j 1 2010	180	0.0077144	0.00525	0.003541	0.007591	0.00747	0.00735
186 188 192 194 196 198 204 208 Σ phi j 1 2010	182						
188 192 194 196 198 204 208 Σ phi j 1 2010	184						
192 194 196 198 204 208 Σ phi j 1 2010	186						
194 196 198 204 208 Σ phi j 1 2010	188						
196 198 204 208 Σ phi j 1 2010	192						
198 204 208 Σ phi j 1 2010	194						
204 208 Σ phi j 1 2010	196						
208 Σ phi_j_1_2010	198						
Σ phi_j_1_2010	204						
	208						
		Σ phi_j_1_2010					
		1	1	1	1	1	1

Table B5. Segment 2: Choice probability of car by category: without any increase (phi_j_2_2010), doubling CO_2Tax (phat_doubling), tripling CO_2Tax (phat_triple); increasing fuelcost by 20, 40 and 60% (market SMALL - Year 2010)

	segment 2 (compact car)										
category_j	phi_j_2_2010	phat_doubling CO ₂ Tax	phat_triple CO ₂ tax	phi (1.2* fuelcost)	phi (1.4 * fuelcost)	phi (1.6 * fuelcost)					
86											
88											
96											
98	0.0577716	0.0859666	0.1144966	0.0608735	0.0640063	0.0671648					
102	0.0545724	0.0782806	0.1005037	0.0572699	0.0599735	0.0626782					
104	0.0533347	0.0757879	0.0963909	0.0558199	0.0582972	0.0607619					
106	0.0493667	0.0662604	0.0796014	0.0514579	0.0535241	0.0555611					
108	0.0473041	0.0616672	0.0719543	0.0491747	0.0510112	0.0528096					
110											
112	0.044564	0.055862	0.0626752	0.0461371	0.0476645	0.0491433					
114	0.042402	0.0515752	0.056149	0.0437268	0.0449976	0.0462119					
116	0.0412518	0.0492757	0.0526829	0.0424608	0.0436128	0.0447057					
118	0.039502	0.0458311	0.0475936	0.0405443	0.041526	0.0424457					
120											
122	0.0343087	0.0375156	0.0367169	0.0346433	0.034907	0.0351019					
124	0.0339801	0.0355766	0.0333389	0.0345443	0.0350435	0.0354783					
126	0.0309648	0.0317123	0.0290692	0.031036	0.0310415	0.0309844					
128	0.0309428	0.0305639	0.0270212	0.0312346	0.0314624	0.0316281					
130	0.0307333	0.0300001	0.0262109	0.0310545	0.0313125	0.0315091					
132	0.0222431	0.0199786	0.0160613	0.0214218	0.0205872	0.0197452					
134	0.0210934	0.0181957	0.0140487	0.0202631	0.0194243	0.0185827					
136	0.0245179	0.0210429	0.0161649	0.0242969	0.0240269	0.023712					
138	0.0226199	0.018586	0.0136687	0.0222508	0.0218413	0.0213962					
140	0.024128	0.0197834	0.0145187	0.0240528	0.023927	0.0237539					
142	0.0218783	0.0173322	0.0122896	0.021535	0.0211521	0.0207342					
144	0.0206144	0.0155056	0.0104389	0.0202598	0.0198692	0.0194469					
146	0.0170877	0.0119671	0.0075014	0.0164079	0.0157219	0.0150341					
148	0.0177177	0.0123798	0.0077423	0.0171444	0.0165545	0.0159528					
150	0.0183349	0.0122813	0.0073631	0.018015	0.0176632	0.0172835					
152	0.0143954	0.0088095	0.0048253	0.013722	0.0130525	0.0123906					
154	0.0148166	0.0092573	0.0051768	0.0141464	0.013478	0.0128152					
156	0.0173315	0.011618	0.0069706	0.016836	0.0163201	0.0157881					
158	0.0123828	0.0070068	0.0035487	0.0116342	0.0109078	0.0102061					

1	1	1	ı		i	i i
160	0.0154546	0.0092915	0.0049998	0.0149954	0.0145191	0.0140296
162	0.010748	0.0061661	0.0031662	0.0097893	0.0088972	0.0080702
164	0.0102693	0.0056215	0.0027542	0.0093559	0.0085056	0.0077171
166	0.0085727	0.0039883	0.0016607	0.0077822	0.0070496	0.0063731
168	0.0078648	0.0034865	0.0013833	0.0070857	0.0063702	0.0057154
170	0.0087644	0.0043883	0.0019666	0.007875	0.0070608	0.0063181
172	0.0067659	0.0026606	0.0009364	0.0060583	0.0054133	0.0048271
174	0.0067039	0.0025876	0.000894	0.0060142	0.005384	0.0048101
176	0.0086056	0.0037126	0.0014336	0.007937	0.0073048	0.0067094
178	0.0070755	0.0029521	0.0011024	0.0063173	0.0056284	0.0050045
180	0.0101637	0.0046003	0.0018637	0.0095987	0.0090459	0.0085078
182	0.008458	0.0032291	0.0011034	0.0079662	0.0074871	0.0070227
184	0.0058584	0.0018638	0.0005307	0.0053175	0.0048163	0.0043535
186	0.008102	0.0030501	0.0010277	0.0075868	0.0070894	0.0066112
188	0.0038685	0.000925	0.000198	0.0034215	0.0030198	0.0026599
192	0.0026452	0.0004832	0.000079	0.0022883	0.0019753	0.0017017
194	0.0024074	0.0004084	0.000062	0.0020741	0.0017833	0.0015301
196	0.0018232	0.0002397	0.0000282	0.0015636	0.0013382	0.0011429
198	0.0023186	0.0003593	0.0000498	0.0020189	0.0017543	0.0015212
204	0.0011597	0.0001039	8.33E-06	0.000981	0.0008281	0.0006976
208	0.0022099	0.0002628	0.000028	0.0020095	0.0018234	0.0016512
	Σ phi_j_2_2010			·		
	1	1	1	1	1	1