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Abstract. This methodological paper reviews different spectral techniques 
well suitable to the analysis of economic time series. While econometric 
time series analysis is generally yielded in the time domain, these 
techniques propose a complementary approach based on the frequency 
domain. Spectral decomposition and time series reconstruction provide a 
precise quantitative and formal description of the main oscillatory 
components of a series: thus, it is possible to formally identify trends, low-
frequency components, business cycles, seasonalities, etc. Since recent 
developments in spectral techniques allow to manage even with short noisy 
dataset, nonstationary processes, non purely periodic components these 
tools could be applied on economic datasets more widely than they 
nowadays are. 
 
Keywords. Time series analysis; Spectral Methods; Frequency domain; 
Singular Spectrum Analysis; Time series decomposition; Denoising. 
 
JEL Classification. C15; C49; C8; E32 

 

1. Introduction 

Dynamical properties of the economic systems are generally inquired in the 

time-domain by analyzing the projections of interesting functions of time 

onto the phase space. However, information obtained by the time-domain 

analysis could be effectively supplemented by a frequency-domain approach, 

i.e. spectral analysis (Granger and Hatanaka, 1964; Priestley, 1981; Press et 

al., 1986; Medio, 1992; Pollock, 2008). This methodology has been 

developed in scientific fields such as digital signal processing, 

oceanography, meteorology, and so on, and lies on the remark that most 

regular behaviour of a time series is periodic; thus, the periodic components 

embedded in the analyzed series can be determined by computing their 

periods, amplitude, and phase (Ghil et al., 2002). The main assumption 
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underlying this use of time- and frequency-domain analysis techniques to 

inquire global system dynamics is that the series X(t) we actually observe is 

an effective realization of the underlying stochastic data generating process 

X. Thus, with some care the inference on specific series can be extended to 

the whole system. 

Therefore, spectral tools are particularly attractive for applied economic 

inquiries, since they allow to investigate crucial issues like trend-cycles 

separation, fundamental cycles extraction, seasonal variability, sectorial 

contribution to growth, denoising, and so on (Lisi and Medio, 1997; Higo 

and Nakada, 1998; Atesoglu and Vilasuso, 1999; Baxter and King, 1999; 

A’Hearan and Woitek, 2001; Croux et al., 2001; Gerace, 2002; Aadland, 

2005). All these critical economic topics have found some answers within 

the time-domain econometric analysis framework, but our discipline would 

have great benefit from a more diffuse and complementary use of the 

frequency-domain analysis. In fact, the high descriptive power of such 

techniques allows a rigorous definition, quantification, and extraction of 

long, medium, and short term components of a time series, thus favouring 

the inspection of both cyclical phenomena and lead-lag relations (Iacobucci, 

2003). This feature is particularly attractive whenever some precise and 

adjustable description of economic fluctuations through formal 

decomposition is needed and it could considerably help to enlighten both 

causal relations and feedbacks among the economic variables. 
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Clearly, the phenomenological nature of such inquiry does not need any a 

priori modelling, thus allowing the researcher to inspect the dataset in an 

inductive manner. Anyhow, some spectral techniques call for covariance 

stationary series, whose first and second moments do not depend on time. 

Since such requirement is not always satisfied in time series, a relaxation of 

this assumption is desirable. Thus, some new spectral tools have been 

developed to analyze nonstationary time series: among them Singular 

Spectrum Analysis (SSA) is an innovative flexible data-adaptive method 

allowing spectral decomposition in short, noisy, and chaotic time series 

without particular characteristics. This is especially appreciable in 

economics, where most series are short and noisy. Notwithstanding 

evidence of chaos in economic datasets has not been confirmed yet, 

Broomhead and King (1986) demonstrate that SSA works well even with 

mildly nonlinear data, as economic series effectively are (Neftci, 1984; 

Brock, 1986; Neftci and McNevin, 1986; Brock and Sayers, 1988; Frank 

and Stengos, 1988; Serletis, 1996; Acemoglu and Scott, 1997; Altissimo and 

Violante, 1998; Stanca, 1999; Stock and Watson, 1999; Brock, 2000; 

McConnell and Perez-Quiros, 2000; Piselli, 2004). Moreover, SSA is 

successful at different time scales, allowing the researcher to inspect the 

series at various resolutions. Thus, a more widespread application of 

spectral tools in economics is desirable to both strengthen and improve the 

findings on the time-domain analysis side. 
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Going deeper into the topic, the typical spectral analysis tool is the power 

spectrum, which records the contribution to the process total variance of 

components belonging to different frequency bands. Thus, power spectral 

analysis is generally applied to inspect the fraction of total information 

carried by different frequencies (Granger, 1966; Medio, 1992). In fact, the 

Wiener-Khinchin theorem implies that the autocorrelation function and the 

power spectrum of a function of time X(t) contain both the same information 

about X. Then, from the Parseval theorem the total power of a function of 

time is the same in both the time and frequency domain. However, among 

the drawbacks of power spectrum analysis there is the difficulty to 

distinguish between quasi-periodic and chaotic signals, as much as between 

low- and high-dimensional chaotic attractors; moreover, some information 

contained in the original signal is usually lost. 

The techniques surveyed in section 2 concern some power spectrum 

estimation methods, which are consequently subject to the above drawbacks; 

on the contrary, methods in sections 4-6 allow in addiction to reconstruct the 

main components of the series, thus providing a rigorous determination of 

their periodic and/or quasi-periodic characteristics.  

This paper is a methodological survey, thus the emphasis is on spectral 

methods and their characteristics rather than on the existent empirical 

applications: the aim is to introduce the reader to the advantages and 

weaknesses of some frequency-domain techniques, highlighting the 

attempts to improve these tools whenever some features of the series 
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compromise the statistical reliability of the analysis. Note that in this 

framework robustness is achieved just when the analyses performed with 

different methods lead to similar results.  

The next sections are organized as follows. Section 2 provides a brief 

review of classical spectral estimation, highlighting some feature of the 

standard Fourier approach solved by successive spectral tools. Section 3 

surveys the Maximum Entropy Method, which underlies the close 

connection between power spectrum and auto-regressive processes. In 

section 4 the problems of signal reconstruction and precise localization of 

purely periodic and narrowband components is addressed. The SSA method, 

diffusely explained in section 5, is a data-adaptive tool allowing a reliable 

signal reconstruction and a precise quantification of trend, low-frequency 

components, dominant cycles, and seasonal movements. Some drawbacks of 

the method are solved through Monte Carlo simulations (section 6), which 

implement testing procedures against different types of noise processes. 

Finally, section 7 provides a simple description of the wavelet method, 

which performs a double decomposition of the signal into the 

time/frequency space and consequently proves very useful in the analysis of 

multiscale nonstationary processes. Section 8 concludes. 
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2. Brief review of classical spectral estimation 

Following the classical Fourier interpretation, signals can be represented as 

linear superpositions of sinusoidal modes, each with its own frequency, 

amplitude, and phase. Thus, a p-periodic function fp(t) can be expressed by 

∑
+∞

−∞=

=
k

kp piktatf )/2exp()( π ,    (1) 

where 
2

||,1 pti <−= . The complex coefficients ak are determined by 

∫− −=
2/

2/
)/2exp()(1 p

p pk dtpikttf
p

a π ,   (2) 

i.e. each ak represents the contribution of the k-th frequency component to 

the periodic function (1).  

An extension to non-periodic functions treats them as infinitely periodic, i.e. 

∞→p . With appropriate transformations of (1) and (2) we obtain the so-

called Fourier pair, i.e. both a frequency- and time-domain representation 

of the underlying process respectively giving its amplitude and phase as a 

function of frequency ω, and its values as a function of time t: 

∫
+∞

∞−
−= dttftiF )()2exp()( ωπω  and ∫

+∞

∞−
= ωωωπ dFtitf )()2exp()( . 

This pair represents the basis for time series interpretation in spectral 

analysis.  

Ghil et al. (2002, p. 16) underlie how  
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“a very irregular motion possesses a smooth and continuous spectrum, 

which indicates that all frequencies in a given band are excited by such 

process. On the other hand, a purely periodic or quasi-periodic process is 

described by a single line or a (finite) number of lines in the frequency 

domain. Between these two extremes, nonlinear deterministic but `chaotic´ 

processes can have spectral peaks superimposed on a continuous and wiggly 

background”. 

 

Thus, our aim is to distinguish among different spectral components in the 

analysis of economic nonlinear time series, in order to single out the main 

cyclicalities and trend characterizing the economic system. This is 

fundamental for the investigation of many economic phenomena, from 

macroeconomics to finance, form sectorial studies to environmental 

economics, and so on. In fact, with proper spectral methods we could 

inductively enhance our empirical comprehensions of the structure and 

cyclical behaviour of the series at different time scales, together with some 

causal and feedback relations among economic variables (cf. e.g. Granger 

and Hatanaka, 1964; Granger, 1969; Klotz and Neal, 1973; Iacobucci, 2003). 

As an example, Pollock (2008) reflects on the nature of the business cycle 

and its eventual relationship with trend by means of some different 

detrending methods based on the discrete Fourier transform, underlying that 

“a clear understanding of the business cycle can be achieved only in the 

light of its spectral analysis” (Pollock, 2008, p.2). On the same line, Wang 
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(1999) proposes an innovative measure of persistence in economic time 

series based on the discrete Fourier transform of their whole spectrum, 

rather than on statistics at the zero frequency only. Concerning financial 

applications, e.g. Chiarella and El-Hassan (1997) and Takahashi and 

Takehara (2008) apply Fourier transform algorithms in order to evaluate 

currency options and derivative security prices. 

 

2.1 Blackman-Tukey windowed correlogram analysis 

Classical spectral techniques generally estimate the power spectrum of a 

series by its periodogram, i.e. the squared modulus of its direct discrete 

Fourier transform. However, power leakage (see below in the section) 

induces systematic distortions and other problems with the estimate variance 

produce inconsistency.  

Thus, Blackman and Tukey (1958) derived an indirect non-parametric 

method based on the Wiener-Khinchin theorem, which states that the lag 

autocorrelation function of a time series and its power spectrum are Fourier 

transforms of each other, i.e. respectively the time- and frequency-domain 

representations of the same process. By a windowed fast Fourier transform, 

the Blackman-Tukey method (BT) provides the series correlogram, i.e. a 

power spectrum estimate through its autocorrelation function. This 

algorithm is particularly advantageous with respect to other classical 

techniques since it reduces the estimate variance and bias by weighting over 
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non-overlapping bins in the frequency domain (Chatfield, 1984). The 

resulting power spectrum is  

2
1

0

)exp(1)( ∑
−

=

=
m

j
jj jiw

m
P ωρω , 

where m represents the window length, i.e. the maximum lag considered, ρj 

the autocorrelation function, and wj the windowing function. Both the 

windowing function and the window length are crucial issues, since a proper 

choice of the filter is fundamental for consistence and low bias (Percival and 

Walden, 1993). Moreover, in the application of this technique there is a 

clear trade-off between resolution and the estimate variance: the lower m, 

the higher the number of independent samples we can extract from the 

series, the lower the estimate variance; but on the other side, too narrow 

windows may loose relevant features of the signal. 

Ghil et al. (2002) underlie that BT is quite an efficient estimate of the 

continuous part of the spectrum, while pure sinusoidal components are 

hardly detected because of low resolution. Obviously this constitutes an 

heavy drawback in economic applications, since we are mainly interested in 

identifying cyclical regularities of the series, i.e. their periodic or quasi-

periodic components. Thus, in the early 80s David Thomson developed the 

Multi-Taper Method (MTM, section 4 below), an extension of the BT 

algorithm actually maximizing resolution by averaging the series along a 

special set of optimal functions (Thomson, 1982). 
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Concerning economic variables, in a pioneering work Granger (1966) 

observes that they possess a typical spectral shape: regardless of the time 

series length and the size of the filtering window, their spectrum shows a 

large bump at the zero frequency band, which is quickly but smoothly 

reabsorbed in the next bands. This is due to leakage phenomena in spectral 

estimation of time series showing a large peak at some frequency: in fact, 

some of the power associated with such frequency actually leaks into the 

estimate of neighbouring frequency bands. In most economic time series 

leakage is due to the fact that trend usually represents by far the largest 

portion of the total variance, i.e. a large bump in the power spectrum.  

Thus, apart from the technical drawbacks of classical spectral estimation 

mentioned in section 1, an extension to recent spectral reconstruction 

techniques helps the economist to curb spectral leakage, detrending the 

series and defining the features of its main fluctuations (sections 4-6 below). 

 

3. Maximum Entropy Method (MEM) 

Another way to solve the shortcoming of resolution in spectral estimation 

methods consists in exploiting the close connections among Information 

Theory, entropy measures, and nonlinear complex systems analysis (Golan, 

2002). In fact, MEM consists in a high-resolution estimate of the power 

spectrum by a stepwise extrapolation of the corresponding autocorrelation 

function. At each step the estimate is carried out in order to maximize the 
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information entropy of the autocorrelation probability density function, i.e. 

the measure of uncertainty associated to the autocorrelation function (Burg, 

1967; van den Bos, 1971).  

Applied to a time series X(t), MEM consists in finding the maximizing joint 

probability density subject to the time series constraints, since conceptually 

all information embedded in the series represents a constraint. Jaynes (1982) 

deals with two types of information set particularly widespread in economic 

applications: the means of different quantities, and the estimated 

autocovariances. In this last case Jaynes’ formulation allows both to derive 

the optimal interpolation of missing values and to predict autocovariances 

not belonging to the information gathering region I, which is an important 

aspect for economic forecasting.  

The MEM estimated spectrum is 

πω
ωλ

ω ≤=
∑
∈

,
)exp(

1)(

Ik
k ki

P ,   (3) 

representing the smoothest and fail-safe spectrum consistent with the data 

(Burg, 1967). In this formula λk represents the Lagrange multiplier 

associated to the k-th constraint of the optimization problem. An important 

feature of (3) is that the more λk tends to zero, the less contributing to the 

power spectrum structure is the corresponding k-th datum.  

Thus, the relevant dataset in MEM is the significant independent 

information, while redundancies are automatically dropped out by owning 

zero potential. As a consequence, superimposing superfluous constraints 
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does not change the final result (Jaynes, 1982). This is particularly 

interesting for econometric applications, since it drops out the 

overspecification problems usually compromising the performance of 

statistical techniques. Accordingly, Lagrange multipliers signal each datum 

potential measuring the importance of the respective constraint, i.e. the 

informative power carried out by the corresponding datum. In addiction, we 

can perform significance tests considering that the most true spectrum 

should be close to the MEM prediction, since by definition the great 

majority of all possible spectra share the information it contains. The tests 

are performed comparing the data entropy with the maximum entropy 

derived imposing the null hypothesis: a large discrepancy represents an 

evidence against the null. 

 

3.1 MEM and Autoregressive models (AR) 

Particularly interesting is the fact that the ME spectrum in equation (3) has 

the same analytical form of the corresponding AR(m)1, where m represents 

the maximum lag of the relevant data, i.e. λm+1 ≈ 0 (Jaynes, 1982). Thus, by 

the ME principle the optimal spectrum estimate corresponds to an AR 

model: this circumstance represents a deep link between spectral estimation 

and autoregressive stochastic processes, which are particularly recurrent in 

economic modelling. Percival and Walden (1993) show that for an AR(m) 

process with generalized white noise disturbance 

),0(~,... 2
11 σηη GWNXaXaX NNNmNmmN +++= −++   
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the associated power spectrum is 

∑ =
+

=
m

k k

X
kia

P
1

2

)exp(1
)(

ω

σω . 

Thus, MEM performs best whenever estimating line frequencies for time 

series actually generated by an AR process (Ghil et al., 2002). On the 

contrary, noisy data considerably complicate MEM estimation, since the 

anomalies often bias the analysis towards some small unrepresentative 

subclass of all the possible processes consistent with the dataset. In 

addiction, the number of detected spectral peaks generally increases with the 

MEM order m: various authors suggested to use information criteria to help 

the correct choice of m (Akaike, 1969; Akaike, 1974; Haykin and Kessler, 

1983), but they often tend to either under or overestimate the proper order. 

Thus, Penland et al. (1991) propose a preliminary denoising of the time 

series through SSA (see section 5.2): this procedure should clean the series 

and facilitate MEM peak detection.  

Summing up, MEM is a parametric method boiling down in the search of 

the AR process better fitting the original time series behaviour. Since the 

robustness of an empirical analysis generally comes from homogeneous 

results in both parametric and non-parametric methods, MEM is often used 

jointly with other spectral estimation techniques. 

Concerning some existent economic applications, Callen et al. (1985) use 

MEM in order to evaluate the predictive power of AR models of spot rates 

with respect to random walk models: this technique is preferred to standard 
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Box-Jenkins’ since it neither arbitrarily truncates the data in the time 

domain, nor imposes periodic extensions in the frequency domain, thus 

relieving distortions in structural change detections. Vinod (2006) elaborates 

a ME bootstrapping algorithm to avoid both shape-destroying 

transformations of time series like detrending, differencing, etc., and 

structural change and unit root tests with complicated asymptotics, while 

Wu and Stengos (2005) propose partially adaptive estimators via ME 

densities. Among other MEM applications to economics, Marchand (1985) 

evaluates the impact of monetary activities upon the Canadian regional 

housing markets, Paris and Howitt (1998) solve ill-posed production 

problems recovering flexible cost functions from very limited datasets, Paris 

(2001) proposes ME estimators unaffected by multicollinearity, which 

uniformly dominate the Ordinary Least Squares one, while Peeters (2004) 

compares generalized ME and Full Information Maximum Likelihood 

procedures allowing in addiction to treat the heterogeneity of observations. 

 

4. Multi-Taper Method (MTM) 

From this section on we introduce some spectral tools capable to both 

perform power spectrum estimation and to reconstruct the series dominant 

frequencies. 

First of all, MTM is a non-parametric technique generally applied to time 

series characterized by both broadband and line spectral components, i.e. 
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respectively continuous parts and pure sinusoids (Thomson, 1982; Park, 

1992; Percival and Walden, 1993). Thus, peak detection is no more limited 

to purely periodic components, which are generally just a small part of time 

series components. 

Then, MTM provides more stable spectral estimates than BT (see section 2), 

since now the variance is further reduced by averaging the correlogram over 

a small set of orthogonal windows, the so-called eigentapers, rather than 

using just a single filter (Thomson, 1990b). This method is also more 

heuristic than BT (Box and Jenkins, 1970), since the optimal eigentapers are 

now the solution of a variational problem minimizing the finite-length 

power leakage outside of a proper frequency band, which can cause artificial 

high power detections at frequencies different from those of the true peaks 

(Ghil et al., 2002).  

Since merely the first eigentapers effectively reduce spectral leakage 

(Slepian, 1978), in MTM the classical trade-off resolution vs. stability 

concerns the K eigenfunctions actually adopted and the choice of both the 

bandwidth and the effective number of tapers. Spectral estimates are 

performed firstly premultiplying the data by the K orthogonal eigentapers, 

thus obtaining K tapered series {X(t)wk(t): t=1,…,N}; then averaging the 

individual spectra 2)()( ωω kk YS ≡ , where Yk(ω) is the k-th tapered series 

discrete Fourier transform. The resulting estimated power spectrum  
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detects line components until the chosen frequency band. Differently from 

previous methods, MTM directly determines the amplitude of each line in 

the spectrum even in processes with high noise background. This is 

particularly relevant, since it allows the quantitative reconstruction of 

periodic components even in highly noisy contexts, like the ones generally 

occurring in economics. 

Assuming that the analyzed time series is the sum of a sinusoid of frequency 

ω0 and amplitude A plus a noise background made up of other negligible 

sinusoids and white noise, i.e.  

)()2exp()( 0 ttiAtX ηωπ += , 

a least squares fit  in the frequency domain yields  
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where Uk(ω) is the discrete Fourier transform of the k-th eigentaper, while 

the asterisk denotes complex conjugation. Related hypothesis testing allows 

both to significantly detect low-amplitude harmonic oscillations in short 

time series, and to reject large amplitude periodicities when the F test fails, 

since the value of this statistic does not depend on the magnitude of A(ω). 

This is a valuable improvement with respect to classical methods, whose F 
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values depended on the estimated amplitude (Jenkins and Watts, 1968). 

Kendall and Stuart (1977) define statistical confidence intervals for the 

estimated amplitude based on the ratio of the variance captured by the 

filtered time series to the residual variance. For hypothesis testing the null 

could be A=0, i.e. X(t) is a white noise process.  

The Thomson (1982)’s MTM conventional assumption that X(t) consists of 

a finite superposition of separate, purely periodic, fixed-amplitude 

components and (locally) white noise is quite restrictive, since quasi-

periodic and other components are widely diffuse in time series. Thus, in 

standard MTM a continuous spectrum (e.g. that of coloured noise) is 

resolved into spurious lines incorrectly associated to arbitrary frequencies. 

However, since presumably most narrowband variability is not associated 

with strictly harmonic purely periodic behaviour, Mann and Lees (1996) 

propose to combine conventional harmonic analysis, which works well just 

in the case of low signal-to-noise ratios (MacDonald, 1989), with additional 

criteria allowing to detect significant narrowband quasi-oscillatory 

components as well.  

Thus, Mann and Lees’ innovative procedure bears to distinguish among 

harmonic, anharmonic, and background noise components; such feature is 

particularly valuable in signal reconstruction (see section 4.1). This new 

method tests all the detected peaks against a red noise background null 

hypothesis, whose variance and lag-one autocorrelation are directly 

estimated from the data. First of all the spectral background is robustly 
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estimated by minimizing the misfit between the AR(1) red noise empirical 

spectrum and the adaptively weighted multitaper spectrum, which is 

smoothed to become insensitive to outliers (Ghil et al., 2002). Then, the 

significance levels against the estimated noise are determined; finally, a 

reshaped spectrum isolates narrowband, possibly intermittent, amplitude-

and-phase-modulated oscillations from harmonic phase-coherent sinusoids. 

Finally, note that such algorithm allows to filter out long timescales, which 

is not necessarily a desirable property for the analysis of the economic 

systems. On the other side, an highly desirable property is the possibility to 

reconstruct the signal dominating components, i.e. the ones which are 

significantly different from the data-adapted background noise. 

 

4.1 Signal reconstruction 

Similarly to SSA techniques (see section 5), it is possible to reconstruct in 

the time domain the signal components detected by MTM. However, while 

in this case the information comes from a frequency-domain decomposition, 

in SSA the reconstruction is carried out in the lag domain (Ghil et al., 2002).  

Signal reconstruction in the time domain is particularly useful for economic 

purposes, since it allows the researcher to focalize on each spectral 

component, defining the characteristics of trend, low-frequency fluctuations, 

business cycles, and seasonal oscillations. Thus, time series analysis gains 

through spectral reconstruction the ability to quantitatively inspect 
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periodicity, phase, and amplitude of all the significant cyclicalities of the 

original signal above a properly chosen background noise. 

In MTM, the discrete-time reconstructed signal centred in ω0 is given by 

)}2exp({)(~
0 tNiAtNX N ∆−ℜ=∆ ωπ , 

where An is the complex envelope determined from a problem involving 

both the complex amplitudes of each of the K MTM-eigenspectra and 

appropriate boundary conditions (Park, 1992). This reconstruction method 

represents and improvement of classical demodulation methods (Bloomfield, 

1976). 

Among existent MTM economic applications, Movshuk (2003) tries to 

assess the distortive effect of detrending methods in demand analysis, Harris 

and Poskitt (2004) identify the cointegration rank of partially non-stationary 

processes, Gan and Zhang (2005) explore the effect of thick markets on 

local unemployment rate fluctuations. 

 

5. Singular Spectrum Analysis (SSA) 

SSA is a fully non-parametric method especially well suiting for short, 

noisy, and chaotic time series (Vautard and Ghil, 1989; Vautard et al., 1992). 

It is a frequency-domain statistical technique related to the Empirical 

Orthogonal Functions (EOFs) analysis (North et al., 1982): assuming time 

series stationarity and examining just enough realizations of a process X(t), 
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we can learn some information about its probability distribution (Ghil and 

Mo, 1991).  

One of SSA main advantages with respect to classical Fourier methods is its 

ability to detect oscillations modulated both in amplitude and phase (Allen 

and Smith, 1996). Thus, the original signal is no more simply decomposed 

into periodic sine and cosine functions, but rather into data adaptive waves 

possibly exhibiting non-constant amplitude and/or phase. 

Initially introduced as a data analysis technique in digital signal processing, 

SSA has been applied to several scientific fields, including financial and 

macroeconomic time series analysis. In this peculiar case, in fact, the 

problem of a substantial lack of observations, which e.g. traditionally 

induced eminent scholars to consider business cycles as inherently 

unpredictable (Fisher, 1925; Slutsky, 1937), could be at least partially 

solved, since SSA well applies to short time series. However, the method is 

not conceived to build models, but rather to identify information about the 

time series deterministic and stochastic parts (Ormerod and Campbell, 

1997). In particular, SSA should both accurately forecast the short-term 

system evolution and capture its long-term features, highlighting some of 

the system peculiar properties, such as its degree of randomness 

(Gershenfeld and Weigend, 1993). 

As mentioned in the introduction, one main problem with SSA application 

to economic data could concern their not verified chaotic nature, since many 

studies have detected nonlinearities in macroeconomic time series, but no 
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evidence of chaos has been clearly confirmed yet (Neftci, 1984; Brock, 

1986; Neftci and McNevin, 1986; Brock and Sayers, 1988; Frank and 

Stengos, 1988; Serletis, 1996; Acemoglu and Scott, 1997; Altissimo and 

Violante, 1998; Stanca, 1999; Stock and Watson, 1999; Brock, 2000; 

McConnell and Perez-Quiros, 2000; Piselli, 2004). However, Broomhead 

and King (1986) show that SSA works well even with mildly nonlinear 

noisy data, as economic time series seem to be (Lisi and Medio, 1997; 

Ormerod and Campbell, 1997). 

As an example, Ormerod and Campbell (1997) apply SSA to UK and US 

quarterly GDP growth rates. They find no underlying structure in the UK 

dataset, while some small sign of regularity is detected for the US, although 

not so clear as to contradict the hypothesis of no predictability for the 

business cycle. However, Palm (1997) observes that this ambiguous result 

could be essentially due to GDP aggregation, which clearly tends to flatten 

the series power spectrum.  

Other economic applications exploit the filtering characteristics of SSA: Lisi 

and Medio (1997) use its denoising features to improve their out-of-sample 

short-term predictions of the exchange rate. On the financial side Thomakos 

et al. (2002) apply SSA to daily realized futures volatility. They clearly 

describe such tool as a non-parametric method particularly useful in 

decomposing volatility into economically significant components, 

succeeding in identifying both a trend and some significant cycles in their 

S&P500 and Eurodollar series. 
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5.1 Technical introduction 

Since no a priori structure is imposed on the data, SSA provides both 

qualitative and quantitative information about the deterministic and 

stochastic parts of the underlying system without requiring prior knowledge 

of its characteristics (Broomhead and King, 1986; Vautard and Ghil, 1989). 

SSA principal goal consists in the identification and distinction of pure 

signal from noise in the analysis of nonlinear dynamics, both in univariate 

and multivariate contexts (single-channel and multi-channel SSA, 

respectively); here we cover just the single-channel method, since the multi-

channel is simply an extension of it (Lisi and Medio, 1997). 

Strictly speaking, SSA is a linear method providing the orthogonal 

decomposition of the time series lag-covariance matrix, i.e. a projection of 

its principal components onto the vector space of the time series delay-

coordinates (Vautard and Ghil, 1989; Vautard et al., 1992). Intuitively, SSA 

provides a decomposition of the time series into orthogonal modes 

characterized by different dynamical properties. To identify periodic or 

quasi-periodic activity in the signal Vautard and Ghil (1989) use the 

eigenvalue spectrum, i.e. a plot of the time series eigenvalues ranked by 

order with the correspondent confidence bars: the near-equality of an 

eigenvalue pair in phase quadrature may be associated with an oscillatory 

movement (Ghil and Mo, 1991). Intuitively, each eigenvalue represents the 

fraction of total variance explained by the associated component: if two 

components explain more or less the same variance and their modes are in 
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phase quadrature, they may represent an oscillatory pair. Thus, with some 

additional techniques we can identify both slow modes, which presumably 

represent trends, and either regular or irregular oscillations from a 

background noise and/or uninteresting processes (Vivaldo, 2007). This is 

clearly innovative with respect to the classical Fourier analysis, where the 

original series is projected onto a basis of simple sine and cosine functions 

(Stein and Weiss, 1971): now irregular modulated fluctuations can be 

treated as well. Moreover, the fully data-adaptive framework of the method 

allows to manage nonstationary time series too, thus avoiding the additional 

noise carried by the eventual transformation of an integrated series. With 

respect to MEM, SSA appreciably allows to reconstruct in the time domain 

any signal decomposition onto the chosen vector space, independently of its 

significance with respect to a null hypothesis background noise. 

Going deeper into technical details, applying a sliding m-window to an NT-

length time series we obtain a sequence of N=NT-m+1 vectors 2 

{ }Nim
i ,...,2,1=ℜ∈x  in the embedding space mℜ , i.e. the space of all the 

m-elements patterns (Broomhead and King [1986]). Then we define a linear 

map Nm ℜ→ℜ:X called trajectory matrix, i.e. 


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The triple (X, Nℜ , mℜ ) can be analyzed through singular system analysis 

methods such as SSA (Broomhead and King, 1986). However, there are 

several aspects an accurate SSA must tackle over. 

 

5.2 Dimensionality and Principal Components Analysis 

An important issue in SSA is dimensionality since the number of degrees of 

freedom, i.e. the number of modes effectively containing significant power, 

is crucial in distinguishing chaotic from stochastic systems (Packard et al., 

1980).  

In economics, for example, the concept of deterministic chaos proves 

particularly useful (Brock and Sayers, 1988; Medio, 1992), although a 

reliable empirical verification is quite difficult to implement. Moreover, 

since signals are finite-sampled and generally perturbed by noise, the way 

we manage dimensionality is fundamental to recognize our system 

dynamics. A possible approach consists in computing the number of 

significant mutually-orthogonal directions of the reconstructed attractor, i.e. 

the dataset statistical dimension S. However, as long as noise and finite 

sampling affect the system, this dimension is not an invariant characteristic 

(Vautard and Ghil, 1989). 

S is directly connected with Principal Components Analysis (PCA) and SSA. 

In fact, from a statistical point of view the dynamics of the data points 

covering the embedded attractor can be linearly described by its principal 

axes. This issue concerns the dimension of the reconstructed phase space: in 
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economic terms, it corresponds to identifying a small number of variables 

controlling the dynamics of our system (Medio, 1992). However, most 

directions in the embedding space are noise-dominated and can thus be 

neglected without significant information loss (Vautard and Ghil, 1989).  

Following PCA, the phase space principal directions are determined solving 

the eigenvalue problem for the sampled time series embedded in mℜ . A 

more detailed exposition can help the reader to make some parallels with 

more familiar econometric tools. As Broomhead and King (1986) explain 

developing the Takens’ method of delays (Takens, 1981), the set of 

orthonormalized vectors { }N
i ℜ∈s  producing a set of linearly independent 

vectors in mℜ  (when applied to the trajectory matrix X) is generally a subset 

of the complete orthonormal basis { }mii ,...,2,1=c  for the embedding space. 

Thus, by construction  

'' iii cXs σ= ,    (4) 

where { }iσ  is a set of real constants for normalization. Since { }ic  is 

orthonormal, it follows that  

ijjiji δσσ=sXXs '' ,     (5) 

where δij is the Kronecker’s delta3. The structure matrix containing the 

correlations between all the pairs of patterns composing X, i.e. 'XXΘ = , is 

real, symmetric, and non-negative definite; thus, its eigenvectors form a 

complete orthonormal basis for Nℜ . Equation (5) is solved by the 

eigenvectors of Θ, i.e.  
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iii sΘs 2σ= ,     (6) 

being { }2
iσ  the corresponding eigenvalues. Equation (4) guarantees that 

there are at least m non-zero σi. 

Looking at an inverse relation of (4), i.e. iii sXc σ= , we can observe how 

SSA is based on a lag-covariance matrix orthogonal decomposition (see 

section 4.1). In fact, since { }is  is an orthogonal set, from 

ijjiij ' δσσ=XcXc' we can derive the eigenvalue equation  

iii cΞc 2σ= ,     (7) 

with XXΞ '=  representing the lag-covariance matrix4 of the process X(t) 

sampled in our NT-length time series.  

If we normalize the eigenvectors El of equation (7) such that 

mjmiij
m

l
l
j

l
i ≤≤≤≤=∑ =

1 ,1 ,
1

δEE , the spectral decomposition formula 

holds, thus allowing to factorize the diagonal matrix Ξ into a canonical form, 

i.e. mjmiji m

l
l
j

l
ilij ≤≤≤≤=−= ∑ =

1 ,1 ,)(
1

2 EEΞ σξ . The eigenvectors El 

represent the lagged sequences of length m providing the new orthonormal 

basis onto which the signal is decomposed (Vautard et al., 1992). They are 

generally called Empirical Orthogonal Functions and come directly from the 

data, while the corresponding eigenvalues {σ2
l} represent the so called 

Principal Components, i.e. the fraction of total variance explained in the 

dataset by each orthogonal direction.  

Coming back to the connection between statistical dimension S and PCA, 

the square roots of the above eigenvalues are called singular values, and 
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their set is the singular spectrum. The dataset noise level can be identified 

by the flat-floor tail of the singular spectrum when singular values are sorted 

in decreasing order. S identifies the number of singular values above the 

noise floor, i.e. the number of significant components characterizing the 

dataset (Vautard and Ghil, 1989). 

 

5.3 Noise-reduction strategies 

Coming back to the drawbacks of noise in spectral analysis, SSA provides 

an interesting denoising tool for its effectiveness in determining the series 

statistical dimension: then, denoised series can be reconstructed in the time 

domain by neglecting all the spectral components belonging to the noise tail 

of the eigenvalue spectrum; thus, spectral estimation can be performed 

avoiding many problems due to noise.  

Following Broomhead and King (1986), we  analyze the effects of noise on 

spectral techniques considering the projection of the trajectory matrix onto 

the orthonormal basis { }ic , i.e. XC. Thus, 2)()'( ΣXCXC = , where 

),...,,( 21 mdiag σσσ=Σ ; since each σi
2 is the mean square projection onto 

the covariance matrix X’X, { }ic  gives the directions and { }iσ  the lengths of 

the principal axes of the embedded ellipsoid. Unfortunately, noise tends to 

obscure system dynamics especially along those directions associated with 

small σi.  
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In the case of monotonic and rapidly decreasing-to-0 spectra the simplest 

noise reduction strategy is a fixed low-pass filter. However, for non 

monotonic spectra exhibiting peaks over a wide range of frequencies the 

issue is more complicate (Vautard et al., 1992).  

A plausible alternative consists in measuring an experimental noise time 

series and its root mean square projections onto the orthonormal basis { }ic  

in order to compute the signal-to-noise ratio associated with each singular 

vector of X, i.e. the vectors of C and the eigenvectors of Θ. That way we are 

implicitly assuming that the realization of our NT-length finite process X(t) 

is the sum of a dynamical process Y(t) and some external noise process. 

Then, we separate the original signal from its experimentally-measured 

noise component, thus allowing the rejection of a portion of noise actually 

affecting the signal. The main danger is to remove parts of the relevant 

dynamics eventually hidden in the detected noise. 

However, since such experimental noise measurement is not always 

possible, other denoising techniques have been developed. For example, 

SSA is considered a powerful tool for signal reconstruction from noisy data 

(Vautard et al., 1992). Since Vautard and Ghil (1989) demonstrate that the 

last PCs of X(t) are noise-dominated, Vautard et al. (1992) develop a 

systematic method to detect the eigenvalue spectrum break actually 

identifying the noise floor. They define a noise-reduction ratio n(p) using 

the p Reconstructed Components (RCs) derived from the data (see section 

5.6), i.e. 
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where the numerator represents the noise associated with the first p RCs, 

while the denominator the total noise. Thus, the average optimum noise 

reduction occurs when (8) is minimized with respect to p, which reveals the 

dataset statistical dimension. However, since real data do not generally 

provide several realizations of the same process, Monte Carlo simulations 

try to make up for this lack: different techniques have been developed, such 

as the surrogate-data method and the Monte Carlo SSA (see section 5.6). 

 

5.4 Robustness and statistical stability of the eigenvalues 

Another crucial aspect for the reliability of SSA is the statistical stability of 

the eigenvalues: various methods have been developed to estimate the 

statistical confidence of the eigenvectors. In principle, since SSA is based 

on estimates of the lagged autocovariances, the eigenvalues should converge 

at least as well as the Blackman-Tukey estimation (Vautard et al., 1992). 

Ghil and Mo (1991) estimate the eigenvalue error by the formula  

kdofk N σδσ 21)2(= ,    (9) 

where Ndof = (NT/m) - 1 is the number of degrees of freedom associated with 

the m-length window. The authors show that such error is proportional to 

the eigenspectrum: in order to reduce (9) the dataset sampling interval 

should be smaller than the autocorrelation length of the field.  
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However, if δσk is at least comparable to the spacing between σk and a 

neighbouring eigenvalue, then the sampling error for the associated EOF is 

comparable to the size of the neighbouring EOF, thus producing degenerate 

multiplets. As a consequence, in such case the eigenvectors derived from the 

sample actually represent a random mixture of the true eigenvectors, and the 

ambiguity in choosing the proper linear combination of EOFs increases the 

sampling error (North et al., 1982). 

Summing up, numerical and sampling errors do not guarantee that 

eigenvalue pairs effectively represent oscillatory movements. In fact, the 

eigenvalues whose error bars significantly overlap with those of the noise 

spectrum are highly suspected of being themselves part of the noise. 

However, the more noisy is the series, the less significant pairs tend to 

emerge from the noise floor. The problem could be partially solved by 

properly increasing m, since the spectrum tail consequently flattens 

(Vautard et al., 1992). However, the widening of the window length is not 

always practicable because of the drawbacks listed in the next section. 

 

5.5 Choice of the window length m 

In SSA the choice of the window length is crucial, since the method cannot 

solve periods longer than m (Vautard and Ghil, 1989; Vautard et al., 1992): 

thus, the higher periodicity we want to look for, the larger m we need. It is 

exactly the flexibility in the choice of m which makes SSA more successful 
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at different time scales than other spectral methods; however, a proper 

decision must evaluate some drawbacks. 

In fact, the selection of m represents a compromise between information and 

statistical confidence (Ghil and Mo, 1991). In order to avoid the last values 

of the autocovariance function being dominated by statistical error, the 

choice set is generally  limited to 
3

TNm ≤ . However, when m is 

considerably larger than the lifetime of the oscillation5 we are inspecting, 

the analysis suffers from the so called Gibbs’ effect, i.e. the overshooting of 

the eigenfunction series at jump discontinuities. This effect tends both to 

reduce the amplitude of the fit within the spell and to produce artificial 

periodicity off the spell, which is then smoothed out (Vautard et al., 1992). 

Moreover, if m is too small neighbouring spectral peaks tend to coalesce 

because of the coarse resolution, while high resolutions, i.e. large m, are 

likely to split broad peaks into several components in neighbouring 

frequencies.   

Practically, Vautard et al. (1992) suggest to select m between the oscillation 

period we want to analyze and the average lifetime of its spells. However, 

since the latter quantity is not a priori known, the authors suggest that SSA 

is usually successful for periods in the range 





 mm ,

5
. 
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5.6 Principal and Reconstructed Components 

Since SSA comes directly from Principal Components Analysis (see section 

5.2), we can think of it in terms of Principal and Reconstructed Components 

(PCs and RCs).  

First of all, the k-th PC is the coefficient of the projection of the original 

series onto the k-th Empirical Orthogonal Function (EOF), i.e. the k-th 

eigenvector Ek of the cross-covariance matrix Ξ: 

mNiExa T

m

j

k
jji

k
i −≤≤= ∑

=
+ 0 ,

1
. 

Thus, PCs are reciprocally orthogonal 6  N-length processes providing 

weighted moving-averages of the process X(t). In fact, since PCs are the 

coefficients of the linear combination of any EOFs subset minimizing the 

least-squares distance between the resulting fit and the original series over 

the chosen window, from a spectral point of view EOFs are data-adaptive 

moving-average filters. Vautard et al. (1992) demonstrate that the sum of 

the PCs spectra is identical to the original series power spectrum. This result 

is particularly interesting, since it underlies the completely linear nature of 

SSA, which valuably simplifies the analysis of nonlinear time series through 

linear tools. 

Now we have introduced all the elements to present the Karhunen-Loéve 

expansion of xi, which is the SSA corner stone:  

∑
=

+ −≤≤≤≤=
m

k
T

k
j

k
iji mNimjEax

1
0 ,1 , .  (10) 
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It illustrates how each observation of the series X(t) is linearly decomposed 

to analyze the information carried by each eigenvector of the orthonormal 

basis, which is determined by sliding the chosen m-length weighting-

moving-average window. 

Thus, PCs are filtered versions of the original series unfortunately not 

performing unique expansions: in fact, since equation (10) depends on 

combinations of i and j, there are clearly multiple ways to reconstruct most 

of the signal components. Moreover, this algorithm reconstructs just an N-

length signal, instead of the NT-length one we need to make comparisons 

with the original data.  

The problem could be managed by means of RCs: considering a subset A of 

K eigenelements, the associated PCs are combined to form the partial 

reconstruction Y(t) of the original series, which is the solution of the least-

squares problem  

∑ ∑ ∑
−

= = ∈
+ −

mN

i

m

j Ak

k
j

k
iji

T

Eay
0 1

2)(min ; 

thus, the augmented version of the optimal series is the closest in a least-

squares sense to the projection of X(t) onto the subset of EOFs belonging to 

A (Vautard et al., 1992). 

It is important to notice that the resulting RCs are characterized by purely 

additive properties: the k-th RC for  is denoted by xk(t), and the 

associated partial reconstruction is )()( txtY
Ak

k∑
∈

= . Consequently, X(t) can 

be expanded as the linear sum of its RCs, i.e. 
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This property is particularly useful in economic applications, since it allows 

to combine the effects of significant fluctuations in order to inspect the 

overall dynamics and eventually some kind of feedback.  

As an example, one of the most puzzling issues in the analysis of economic 

cycles deals with the trend-cycle separation and the nature of eventual 

feedbacks between the overall trend and the cyclical characteristics of the 

economy. Thus, a method allowing the time-domain reconstruction of 

significant economic fluctuations and their simple linear summation could 

shed some new light on controversial issues of that kind. 

However, despite the linear summation in (11), the transform between X(t) 

and xk(t) is nonlinear, since the relation between each EOF and the original 

series is actually nonlinear: this fact allows a proper decomposition of 

nonlinear time series. Finally, notwithstanding RCs are correlated even at 

zero-lag, they allow both component reconstructions on the whole time span 

and a precise localization of short oscillations spells, thus representing a 

fundamental improvement with respect to PCs. 

 

5.7 Interpretation of the eigenelements 

This section clears some concepts for the correct interpretation of SSA 

results. In particular, for economic (and other) applications it is fundamental 

to correctly denoise the series, identify significant oscillations, and 
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distinguish between trend and ultra-low frequencies. The following 

subsections deal with all these subjects. 

5.7.1 Trend and ultra-low frequencies 

A basic assumption in SSA is the covariance stationarity of the data 

generating process X(t), i.e. the time invariance of its first and second 

moments: this assumption is essential, since SSA is based on the estimate of 

the process lag-covariance matrix from the dataset. Notably, Vautard and 

Ghil (1989) hypothesise that lag-covariances of components outside the 

dataset time span may be estimated through the available observations, thus 

suggesting new forecasting and backcasting tools. However, these 

procedures are plausible just when assuming stationarity of the generating 

process on the observed timescale (Allen and Smith, 1996, p.3376). 

Nevertheless, the single NT-length realization {X(t)} we actually observe 

may appear nonstationary if the stationary process X is essentially 

characterized by periods longer than NT (Vautard et al., 1992). Thus, if we 

do not dispose of several realizations and checks for stationarity, we cannot 

effectively distinguish between trends and ultra-low frequencies.  

In order to solve the impasse, Ghil and Vautard (1991) show how SSA 

provides itself a fully non-parametric data-adaptive detrending method 

performing as a low-pass filter. Moreover, Vautard et al. (1992) develop a 

systematic data-adaptive algorithm to remove trend and ultra-low 

frequencies based on the Kendall nonparametric test for global trend 

identification (Kendall and Stuart, 1968). Note that a sizable trend should 
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appear in the first few PCs of the series, since it accounts for most of its 

variance; however, since finite length may produce artificial trends, after the 

first detrending a new test is performed on the detrended series and so on, 

until the reconstructed series shows no significant trend at all. 

 

5.7.2 Eigenvalues pairs 

As we said in section 5.1, nearly-equality of two successive eigenvalues and 

phase quadrature of their associated EOFs may jointly identify a 

fundamental oscillation. Ghil and Mo (1991) characterize nearly-equality as 

{ }11 ,min ++ ≤− kkkk δσδσσσ , 

where δσk is defined by (9); on the contrary, phase quadrature is analyzed 

through the lag-correlations of the corresponding PC pairs. 

However, since we usually lack of reliable estimators for lag-correlations, 

Vautard et al. (1992) propose two substitutive criteria based on spectral 

properties of the eigenvectors. First of all, oscillatory pairs of two 

successive eigenelements (k,k+1) must be spectrally localized around the 

same frequency, i.e. the quantity 1+−= kkk fffδ  has to be small. Secondly, 

since oscillations are generally identified by high spectral peaks, the 

frequency f* resolving the oscillatory pair must present a reconstruction 

filter whose response function explains at least 2/3 of the process variance at 

f*7.  

Notably, these criteria are not very sensitive to changes in the window 

length. However, they may sometimes be misleading. In fact, Allen and 
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Smith (1996) show some cases where the existence of trends and/or the 

intentional suppression of some cycles produce spurious EOF pairs. Then, if 

the noise is mistakenly identified by eigenvalue pairs included in the SSA-

based noise reducing filter, any subsequent analysis is clearly biased. Thus, 

in order to reduce the probability of type I errors,  i.e. the rejection of a null 

hypothesis when it is actually true, Monte Carlo experiments are sometimes 

performed (see section 6). 

 

5.7.3 Eigenvectors  

A crucial point in SSA concerns the interpretation of the EOFs, in order to 

assign them a clear meaning in the analysis of system dynamics; this issue is 

directly related to the assumptions made upon noise.  

As previously explained, the detection of oscillatory EOF pairs may often 

correspond to nontrivial signals; however, this analysis is neither immediate 

nor unambiguous: if we do not adopt proper devices, nontrivial oscillatory 

pairs could be falsely detected even in pure noise processes. Moreover, 

since in conventional SSA both high- and low-ranked EOFs tend to pair up, 

some authors consider the stability of a pair with respect to variations in the 

window length m as an evidence for the significance of the corresponding 

oscillation. However, Allen and Smith (1996) notice that this kind of 

stability does not always identify nontrivial signals. In fact, the red noise 

eigenspectrum typically shows more power than the average at certain low 



38 
 

frequencies: thus, the EOF pairing tends to occur over different m even if 

the generating process is a pure noise. 

Coming back to the meaning of SSA eigenvectors, in pure deterministic 

signals EOFs with m’ non-zero eigenelements define the linear m’-subspace 

where the attractor lies; clearly, increasing the sample size NT they converge 

to the principal axes of the true attractor (Allen and Smith, 1996).  

A similar interpretation is possible for the first p highest-ranked EOFs 

coming from series affected by white noise. In such cases the eigenspectrum 

truncation is a standard practice, since clearly when p ≥ m’ the whole 

variance of the significant signal is projected onto the p selected EOFs, 

while just a p/m fraction of noise is projected, since the typical feature of 

white noise processes concerns the projection of equal variance onto all the 

series EOFs. Consequently, the method provides an m/p enhancement of the 

signal-to-noise ratio. 

Unfortunately, this issue becomes more complicated when the series is 

affected by coloured noise: since the lag-covariance matrix is no more a 

scalar multiple of the identity matrix but depends on the signal-to-noise ratio 

and on the lag-covariance matrices of both the true signal and the noise, 

algorithms providing the eigenspectrum truncation are generally no longer 

correct and the eigenvalues rank-order is unreliable (Allen and Smith, 1996). 

This is clearly a serious problem for the reliability of the SSA analysis, 

since its standard procedure does not provide an effective denoising tool 

against the very widespread coloured noise processes. In order to solve this 
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drawback, some authors propose a Monte Carlo approach to SSA (see 

section 6). 

Finally, SSA eigenvectors may be interpreted as data-adaptive moving-

average filters for noise. Thus, according to Broomhead et al. (1987), the 

significant signal can be separated from noise by exploiting the EOFs 

topological features: in fact, deterministic eigenvectors show a regular shape, 

while stochastic ones have noisy profile. However, an overestimation of the 

number of significant eigenvalues is not too a dangerous mistake, since it 

simply corresponds to leaving some noise in the data (Medio, 1992). 

 

6. Monte Carlo SSA and the surrogate data 

method 

As previously underlined, standard SSA may be misleading in the case of 

either low signal-to-noise ratio or coloured background noise. In fact, they 

could make slow modes being incorrectly interpreted as nontrivial signals, 

and/or nontrivial signals actually embedded in coloured noise being 

neglected if their variance is smaller than that of the noise slow modes. Thus,  

Monte Carlo (MC) approaches has been developed, allowing to distinguish 

a given time series from any well-defined process, including noise 

backgrounds (Ghil and Vautard, 1991; Vautard et al., 1992; Allen and Smith, 

1996; Paluš and Novotná, 2004; Paluš and Novotná, 2006).  



40 
 

In particular, Allen and Smith (1996) propose a MC method to isolate red 

noise processes eventually embedded in the dataset, but a generalized 

version can be applied to any kind of coloured noise. The method 

implements the so called surrogate data method (Theiler et al., 1992), 

which creates surrogate series and estimates their lag-covariance matrix 

distribution, thus defining their respective projections onto the interested 

EOFs in order to test whether the original data coefficients are significantly 

different from those of a data-adaptive noise process.  

More clearly, surrogate data are different realizations of the hypothesized 

noise, since MC-SSA is based on a null hypothesis (NH) approach. Thus, 

we firstly assume some NH noise process and generate the relative surrogate 

realizations to test the significance of the detected SSA components with 

respect to the null. Secondly, both the eigenvalues coming from the dataset 

and the surrogate data bars are plotted against the dominant frequency of the 

corresponding EOF. Note that the surrogate data bars represent the a% 

confidence intervals of the corresponding surrogate eigenvalues, signalling 

that a% surrogate realizations exhibit a k-th eigenvalue lying between the k-

th bar extremes. Once the problem of selecting a single dominant frequency 

is solved8, a sort of coarsely discretized power spectrum is obtained. Finally, 

the data eigenspectrum and the surrogate data bars are compared frequency-

by-frequency: when a data eigenvalue falls above the corresponding 

surrogate bar, the related EOF accounts for more power than expected under 
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the null, thus signalling an eventually nontrivial signal (Allen and Smith, 

1996).  

Unfortunately, such occurrence is necessary but not sufficient to detect 

nontrivial signals: since our NH test does actually correspond to m mini-

tests, the probability of a by-chance excursion of at least one eigenvalue 

above the corresponding a%-confidence-level surrogate bar is generally 

higher than (100 – a)% (cf. Thomson, 1990a). Allen and Smith (1996) 

suggest a two-pass Monte Carlo approach to directly estimate such by-

chance probability: after computing the distribution of the surrogate data 

lag-covariance matrix and performing a second pass trough the ensemble, 

the probability of a given number of excursions above a predetermined 

percentile is directly estimated from its relative frequency in an element of 

the ensemble.  

Pointing out the features of MC-SSA, we observe that this procedure is 

fundamental when either the number of significant EOFs is small or the NH 

is particularly complicate. However, since the parameters of the underlying 

noise process are often unknown, we must apply maximum likelihood tests 

on them whenever failing to reject the NH (cf. Allen and Smith, 1996). In 

addiction, when dealing with hybrid NHs testing whether the residuals from 

some nontrivial signal identification are attributable to a chosen noise 

process, the signal-reconstruction approach described in section 5.6 can be 

applied to generate composite signal-plus-noise surrogates. Unfortunately, 

this technique does not yield unbiased estimates of noise parameters9, while 
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SSA-based reconstructions are poor when applied to irregularly sampled 

and/or heteroskedastic data. However, it is extremely valuable the potential 

of the method to deal with complicate and hybrid NHs, since it highly rises 

the confidence of the researcher in identifying nontrivial signals and noise 

backgrounds, which is the core of the spectral methods described in the 

paper. 

Coming back to the relevant risks of standard SSA, its full data-adaptive 

framework is clearly a precious advantage with respect to other spectral 

tools, but it may be hazardous when detecting unknown signals. In fact, in 

this case artificial variance compression and similar effects raise the 

probability of type I error. Thus, Allen and Smith (1996) suggest an 

improved Monte Carlo algorithm which allows both to retain the data-

adaptive properties when extracting already detected signals, and to avoid 

the above mentioned shortcoming when no signal has been identified yet. 

The core assumption is that any NH is true until otherwise established. So, 

the method projects both the data and the surrogates onto the EOFs expected 

under the NH, rather than deriving them from the data themselves. Then, 

when a signal is detected, it is analyzed and reconstructed through standard 

SSA. The risk of such technique is to miss relevant signals which do not 

exactly align with the NH EOFs, but its great advantage is a more precise 

quantification of the type I error probability, which is the worst error type in 

econometrics. 
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To conclude, a crucial point when applying MC-SSA is that surrogates and 

data have to be identically treated in order to perform correct statistical 

testing10: a careful analysis should stop only when the NH is no longer 

rejectable. 

 

6.1 Enhanced MC-SSA 

A main trouble with MC-SSA is the assumption that relevant signals 

linearly add to the specified noise background. Thus, in order to be detected, 

a signal must show significantly greater variance in its characteristic 

frequency band than the NH (Paluš and Novotná, 2004; Paluš and Novotná, 

2006). However, the signal of interest has often more complicated origins, 

which cannot always be correctly analyzed through standard MC-SSA. 

Paluš and Novotná (1998) propose an enhanced MC-SSA method, which 

tests in addiction the dynamical properties of the SSA modes against the 

surrogate ones, thus allowing to detect interesting dynamical modes 

independently of their relative variance. 

The enhanced method evaluates the uncertainty embedded in the series by 

applying some notions from both the theory of stochastic processes and the 

information theory. As explained in section 3, the uncertainty of a stochastic 

variable is measured by its entropy (Cover and Thomas, 1991). Since 

economic time series can be considered as single realizations of the 

underlying stochastic process, i.e. sequences of stochastic variables, the 

uncertainty they carry in can be measured by entropy. Moreover, since time 



44 
 

series generally show the temporal evolution of not completely random 

systems, the entropy rate, i.e. the rate at which they forget information 

about their previous states, can be thought of as an important quantitative 

characterization of the system temporal complexity (Paluš and Novotná, 

2004). 

Since the possibility to compute entropy rates from experimental data with 

the well-known Kolmogorov-Sinai Entropy (KSE) is very limited (Cover 

and Thomas, 1991), Paluš (1996) proposes to use the so called Coarse-

grained Entropy Rate (CER). CER is based on mutual information I(x;xτ), 

which is the average amount of information about Xτ contained in the τ-1 

variables X1,X2,…, Xτ-1. The time series X(t) is a realization of the ergodic 

and stationary stochastic process X. CERs are not supposed to estimate the 

exact entropy rates because of their dependence on particular experimental 

and numerical setups, but rather to produce measures of the regularity and 

predictability of the analyzed series in a relative sense. It means that 

different datasets can be compared by their CERs if both they were 

observed in the same experimental conditions and CERs were estimated 

using the same numerical parameters. 

The enhanced MC-SSA is implemented through six steps (Paluš and 

Novotná, 2004; Paluš and Novotná, 2006): 

1. the standard MC-SSA is performed, identifying the frequency 

bin with the highest power; 
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2. a NH benchmark model is fitted on the analyzed series, and 

the residuals computed; 

3. surrogate data are generated with the above model using 

randomly permutated residuals as innovations; 

4. each surrogate realization undergoes SSA, finding for each 

frequency bin the surrogate eigenvalues distribution at the chosen 

confidence level; 

5. for each frequency bin the data eigenvalues are compared 

with the surrogate bars: if an eigenvalue lies outside the respective 

surrogate range, the NH is rejected; 

6. regularity indexes are computed for both data- and surrogate-

SSA modes; then, they are statistically tested with procedures 

analogous to the eigenvalue test. 

Summing up, the rejection of a NH always suggests that something has been 

neglected in the benchmark model. However, a rejection based on the 

eigenvalues hints a different covariance structure than the NH noise; on the 

contrary, a rejection based on the regularity index suggests that the dataset 

contains some dynamically interesting signal characterized by higher 

regularity and better predictability than the NH model. 
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7. Wavelet analysis technique 

For the application of SSA and derived techniques the analyzed series do 

not necessarily need to be stationary, since these methods manage in taking 

into account the distortive effects of finite-length on stationarity. 

Nonetheless, an approach particularly successful in dealing with realizations 

of multiscale nonstationary processes, which show nonstationary power at 

many different frequencies, is the wavelet analysis technique (Daubechies, 

1990; Ramsey, 2002; Schleicher, 2002; Crowley, 2007). It attempts to solve 

the typical problem of classical analysis methods concerning the localization 

of oscillatory movements in time and frequency, the first involving the 

choice of the filtering window size, the second the eventual localization of 

the dominant frequencies of periodic signals.  

The innovative feature of this method with respect to the techniques 

surveyed above consists in the simultaneous decomposition of time series 

into the time/frequency space, thus gaining information on both the 

amplitude of any eventual periodic signal, and its variation through time 

(Torrence and Compo, 1998). Thus, the approach involves a transform from 

one-dimensional time series images to two dimensional time-frequency ones. 

It is important to underlie that an high precision in time localization in the 

high-frequency band requires a trade-off in terms of a reduced frequency 

resolution, and vice versa (cf. the uncertainty principle: Chui, 1992; Lau and 

Weng, 1995). 
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The core of wavelet parametric method consists in sliding window functions 

of particular shapes (either real or complex) along the analyzed series, in 

order to obtain a time series of the projection amplitudes. Among the most 

common wavelet functions there are Morlet, Paul, the Mexican hat, and the 

derivative of Gaussian (DOG) functions (see Farge, 1992; Lau and Weng, 

1995; Torrence and Compo, 1998; Crowley, 2007). A main advantage of 

this method is the possibility to vary the wavelet scale during the same 

analysis, changing its width. It basically works as a bandpass filter with 

known response function, the wavelet function ψ(η), where η is a non-

dimensional time parameter; consequently, the method can reconstruct time 

series by inverse filtering. 

The wavelet transform (WT) is a sort of filter defined as the inner product of 

the wavelet function with the original N-length time series X(t), i.e. 

∑
−

=


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 −

=
1

0

* )'()(
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n
nn s

tnnxsW δψ ,   (12) 

where s represents the wavelet scale, n the localized time index, δt the 

constant sampling time, and the asterisk the complex conjugate, i.e. the 

number obtained changing the sign to the imaginary part of a complex 

number.  

Since the WT is generally complex, both its amplitude |Wn(s)| and 

phase [ ])}({/)}({ sWsW nn ℜℑ  can be identified, where )}({ sWnℑ  and 

)}({ sWnℜ  respectively represent the WT imaginary and  real parts. 
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Evaluating (12) for various s along n, a two-dimensional variability image is 

derived by plotting the wavelet amplitude and phase. The wavelet power 

spectrum, i.e. the spectrogram or scalogram, contains information about the 

relative power of the signal at a certain scale and time. Qiu and Er (1995) 

demonstrate a result particularly useful in applications: the bias of the 

wavelet spectrogram in noisy signals depends just on the power associated 

with noise, thus being independent of time, scale, and the wavelet function; 

on the contrary, the variance of the wavelet spectrogram depends on the 

spectrogram of the signal component, which is a function of time and scale. 

More important for hypothesis testing, Torrence and Compo (1998) 

demonstrate that the wavelet power is distributed like a 2
2χ . Thus, these 

results suggest a fruitful use of wavelet techniques in time series analysis. 

Concerning economic applications, Ramsey (2000) suggests to implement 

these tools for multiple purposes: first of all as an exploratory device to 

enlighten the dynamics of frequency components in economic and financial 

datasets; to explore the relationships among economic variables at a 

disaggregate-scale level; to forecast series by scale, in order to analyze both 

their global and local features; and finally, to deal with local inhomogeneity. 

The next subsections deal with some introductory technical details about the 

wavelet computation algorithm, its variance decomposition procedures and 

some statistical hypotheses testing. For a recent complete review of the 

method addressed to economists refer to Crowley (2007). 
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7.1 Computation algorithm 

The WT can be implemented in the frequency domain through the Fast 

Fourier Transform (FFT), which is an algorithm for Fourier transform (see 

section 2) allowing the simultaneous computation of all the N points of the 

series. In the Fourier domain the WT (12) becomes  

∑
−

=

=
1

0

* )exp()(ˆˆ)(
N

k
kkkn tnisxsW δωωψ  ,   (13) 

where ω is the frequency and the hat (^) indicates the FFT algorithm, which 

in the case of X(t) is calculated by 
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Note that in order to make the scalogram comparable with different power 

spectra, the wavelet function requires a normalization (Torrence and Compo, 

1998). 

Then, there are six steps to compute the WT and perform the decomposition 

of the series into the time/frequency space: 

1. choose a mother wavelet, e.g. Morlet, DOG, etc.; 

2. compute the mother wavelet FFT; 

3. compute the time series FFT; 

4. find all the scales, which are power-of-two multiples of the smallest 

resolvable scale s0 (Torrence and Compo, 1998; Lau and Weng, 

1995); 

5. for each scale: 
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 compute the daughter wavelet Fourier transform at that scale 

through the formula )(ˆ2)(ˆ 0

2/1

kk s
t
ss ωψ

δ
πωψ 






= ; 

 normalize dividing it by the total wavelet standard deviation; 

 multiply the result by the time series FFT (14); 

 compute the inverse transform back to real space using (13); 

6. make a contour plot. 

A main problem with the computation of the WT in the Fourier space is that 

the time series is thus supposed periodic. An escamotage to avoid the signal 

at one end of the series being wrapped around to the other end consists in 

padding one time series end with zeros. 

 

7.2 Statistical NH testing 

Standard statistical testing on the WT involves the series scalogram. In fact, 

whenever a peak exceeds the chosen background Fourier spectrum, its 

related features are likely to be true with a certain confidence level. 

However, the wavelet testing procedure is a bit different from the previous 

ones, since it can involve both local and global characteristics of the series. 

More in details, Torrence and Compo (1998) show that the NH of interest 

can be tested by assuming a proper background mean spectrum, since the 

local wavelet spectrum, i.e. the time/frequency spectrogram, follows the 

mean Fourier spectrum, i.e. the spectrum obtained by time-averaging the 
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power map at each duration. Since the distribution of the Fourier power 

spectrum is given by 

2
22

2

2
1

2
ˆ

χ
σ kd

k P
xN

→  , 

where Pk represents the mean spectrum at the Fourier frequency k, the 

corresponding distribution for the local wavelet spectrogram at each time n 

and scale s is given by  
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→  .   (15) 

In (15) Pk represents the mean spectrum at the Fourier frequency k 

corresponding to the wavelet scale s: apart from this relation, the 

distribution of the local spectrogram is notably independent of the chosen 

wavelet function.  

As in classical Fourier analysis, smoothing the wavelet spectrum can 

desirably enhance the confidence in regions of significant power; however, 

the spectrum can now be smoothed by averaging either over time (global 

wavelet spectrum) or over scale (Torrence and Compo, 1998). In the time 

domain the technique is particularly useful as it succeeds both in the global 

and local frameworks, since the global wavelet spectrum is an unbiased and 

consistent estimator of the true spectrum (Percival, 1995), and the NH 

spectrum can be measured also in the local context (Kestin et al., 1998). On 

the frequency side, the scale-averaged spectrogram corresponds to a time 

series of the dataset average variance over a certain band: this property can 

be used to examine eventual frequency modulations. 
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At last, the confidence contours are plotted at the desired level. The 

confidence interval, i.e. the probability that the true wavelet power lies 

within a certain interval, is derived by (15):  

2
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2*2
2
2

)(
)2/1(
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p nnn −

≤≤
χχ

, 

where Wn
*2(s) represents the true wavelet power, and p the desired 

significance.  

 

7.3 Variance decomposition through wavelet variance 

estimation 

The wavelet variance decomposition is particularly useful to analyze 

stochastic processes X, since it allows to enlighten the global variance 

contribution of components associated with different scales (Percival, 1995), 

i.e.  

∑
∞

=

=
0

2 )var()2(
j

t
j

X Xv . 

Roughly speaking, )(2 λXv is a measure of the variation of a weighted 

average of the process X with bandwidth λ: the plot )(2 λXv  versus λ 

indicates which scales do mainly contribute to the global variability. Notice 

that the wavelet variance provides a way of regularising the spectrum, since 

it summarizes spectral information using one value per octave frequency 

band (Percival, 1995). 



53 
 

A shortcoming of the wavelet variance is due to its bias towards power-law 

processes, i.e. this method tends to identify power laws in the data even 

when other models would be more explicative (Percival and Guttorp, 1994). 

In order to avoid this drawback, a complementary spectral analysis is highly 

recommended.  

Two estimators are generally used: the Discrete Wavelet Transform (DWT) 

and the Maximal-Overlap Estimator (MOE). DWT constructs an unbiased 

and consistent estimator for the variance by discretely sampling the wavelet, 

which acts as a filter for scale λ; on the contrary, MOE is based on the 

overlapping technique, which is generally used to reduce the estimate 

variance (Percival, 1995). It consists in subdividing sampled data into K 

subintervals, calculating each transform, and then averaging over them to 

obtain more accurate estimates (Medio, 1992). An analytical description of 

WTE and MOE confidence intervals is derived in Percival (1995). 

Nevertheless, notwithstanding the wavelet filter for scale λ can be regarded 

as a band-pass filter, the asymptotic relative efficiency of WTE with respect 

to MOE is always less than unity and can even approach 0.5 (cf. Percival, 

1995), thus suggesting the use of MOE. 

Summing up, the wavelet method provides a valid alternative to the SSA 

and MC-SSA analyses in the case of multiscale nonstationary processes, 

supplying a double decomposition in the time/frequency domain and 

supporting reach procedures for hypotheses testing. 

 



54 
 

8. Conclusions  

This work is a methodological review of some classical and more recent 

spectral techniques for time series analysis: their features suggest that a 

more widespread use in economics and finance would be particularly 

profitable to enlighten economic system dynamics. In fact, while most 

traditional econometric time series analysis substantially lies in the time 

domain, spectral analysis is yielded in the frequency domain. The idea dates 

back to the 1960s, when some advances in spectral estimation algorithms 

and the increasing necessity of deeper insights in time series structure 

suggested the application of spectral methods to macroeconomic time series 

(cf. e.g. Granger and Hatanaka, 1964; Nerlove, 1964; Granger, 1966). The 

main aim of these techniques is to detect low, medium, and high frequency 

components carrying the most information in the time series, thus providing 

precise filtering methods, the identification of the signal dominant cycles,  

trend-cycle separation, business cycles extraction, and the analysis of co-

movements among different series.  

The present work surveys some recent univariate methods for spectral 

analysis and time series reconstruction. Since the robustness of a result is 

generally obtained when different spectral techniques produce quite 

homogeneous outcomes, it is particularly important to study and use a 

differentiated set of spectral tools. From the above survey the highly 

diversified nature of these techniques emerges: from classical Fourier 

methods, which succeed in identifying purely periodic signals, to more 
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recent MEM, which allows to separate periodic harmonic components from 

quasi-periodic ones; from SSA and MC-SSA, which provide a data adaptive 

detrending tool and support both the reconstruction of signal components 

from the eigenvalue decomposition and some testing procedures for 

different null hypotheses noise processes, to wavelet analysis, which is 

particularly useful in the analysis of nonstationary processes. Our inquiry 

does not include cross-spectral analysis, which is a valuable tool for the 

investigation of co-movement among series (for a recent survey cf. 

Iacobucci, 2003). 

Clearly, all these techniques hold a good potential for economic application 

both in micro- and macro-analysis, since they allow to gain deep 

quantitative insights into any noisy, nonlinear and short time series. 
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Notes
                                                 
1 More precisely, power spectra are Fourier transforms of the corresponding lag 
autocorrelation functions, which determine Wiener prediction filters, whose coefficients 
can always be interpreted as AR coefficients (Jaynes, 1982). 
2 Two SSA algorithms are generally applied, differing for their window characteristics: here 
we essentially refer to Broomhead and King (1986)’s one, whose window stops when either 
the beginning or the end of the series is reached, i.e. N=NT-m+1. On the contrary, Vautard 
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and Ghil (1989) develop a sliding-off-the-ends window algorithm, where N=NT+m-1 and 
the lag-covariance matrix contains some missing value. 
3 Kronecker’s delta is a 2-variable function (e.g. i and j) assuming value 1 if i=j and 0 
otherwise. 

4 For each ∑
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the Yule-Walker estimate is used. However, both the 

estimation algorithms by Broomhead and King (1986) and Vautard and Ghil (1989) 
explained in note 2 are biased, depending both on NT and X. Nevertheless, the latter 
provides a significant additional noise reduction when applied to short series, being 
subjected to more bias but less variance than the first (Allen and Smith, 1996). 
5 Note that sometimes the frequency band we are interested in is associated with the least-
unstable periodic orbit embedded in a strange attractor, which can intermittently attract our 
system trajectories, thus generating oscillations with strongly variable amplitude (Vivaldo, 
2007). In such cases a simple decomposition of the signal onto sine and cosine functions 
looses most information; thus, data-adaptive decomposition is strongly recommended. 
6 Note that orthogonality does not imply independence, which in SSA holds just at zero-lag.  
7 The response function ρ of a subset A of eigenelements at frequency f is defined as 

∑
∈

=
Ak

k
A f

m
f

2
)(~1)( Eρ , where the argument of the absolute value is the reduced 

Fourier transform of the corresponding eigenvector Ek. The criterion suggested by Vautard 
et al. (1992) is based on the analysis of the response function )()( *

1
* ff kk ++ ρρ , which 

must be close to 1 because of the orthogonality constraint imposed on the EOFs. 
8 Since SSA EOFs are not pure sinusoids, their association to a single frequency is quite 
problematic. Allen and Smith (1996) propose to identify as dominant the frequency 
maximizing the squared correlation with the corresponding sinusoid, while Vautard et al. 
(1992) apply the reduced Fourier transform. 
9 This is valid for both large and short series: in the first case, when the noise is added to the 
RCs its variance is distributed over all frequencies, including the signal ones; in the other 
case, SSA-based reconstructions tend to be over-fitted near the series endpoint (Allen and 
Smith, 1996). 
10 A critical issue concerns the way we deal with artificial variance compression (Allen and 
Smith, 1996): in standard SSA it arises since the algorithm makes EOFs maximizing the 
variance accounted for in the data by the smallest possible number of patterns. Thus, when 
analyzing a pure noise segment the highest ranked EOF artificially accounts for an 
improbably high variance relative to the variance it accounts for in an arbitrary series 
generated by the same noise process, and vice versa. Then, the Florida-Milwaukee-UCLA 
test based on the eigenspectrum shape was implemented (Elsner and Tsonis, 1994; Elsner, 
1995): it does no more project each surrogate lag-covariance matrix onto the data EOFs, but 
on a new EOF basis for each surrogate realization. In such way the artificial variance 
compression effect is present in both the data and the surrogate eigenspectra. However, 
since such test compares the overall shape of the ranked eigenspectra in both the data and 
the surrogates, it may be misleading when the rank-order is misleading, as could happen in 
standard SSA. 
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