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<< A wide range of computer-based adaptive algorithms exits for exploring artificial adaptive systems 
including classifier systems, genetic algorithms, neural networks, and reinforcement learning 

mechanisms. The multiplicity of techniques presents a problem for analysis. How sensitive are the results 
to a particular incarnation of the adaptive agent? This problem, of course, confronts any attempt to 

lessen the rationality postulates traditionally used in economic theory. Usually, there is only one way to 
be fully rational, but there are many ways to be less rational. It is important in building a theory of 

artificial adaptive agent to construct agents  that exhibit robust behaviour across algorithmic choices>> 

Holland and Miller (1991), “Artificial Adaptive Agents in Economic Theory”, AER,  p. 365. 
 
 
 
ABSTRACT 
The paper proposes an experimental setup to compare different representations of 
artificial adaptive agents (genetic algorithms, artificial neural networks, and classifier 
systems) and suggests some criteria to assess equivalence and robustness of 
performance. In economic theory, the use of artificial adaptive agents as substitutes for 
the homo oeconomicus raises important methodological issues. While the reductionist 
approach grounded on Olympic rationality offers full rationality as the unique reference 
point for problem solving, weaker notions of rationality generate a variety of processes 
and outcomes of decision-making. The paper gives some suggestions on sensitivity of 
the behaviour of agents to the algorithmic choice and to the codification of knowledge. 
Preliminary results show that in an iterated prisoner’s dilemma interesting patterns of 
behaviour (such as strategies that perform better than the tit-for-tat) emerge. 
 
Keywords: rationality postulate, artificial adaptive agents, agent-based modelling. 
 
 

0. Introduction 
 

The diffusion of the theory of complexity in economics has lead to a reassessment of the 

way in which agents are conceived and modelled. The underpinnings of complexity are 

quite irreconcilable with the typical reductionism of mathematical tools (Dalmazzone – 

Fontana 2006). Leaving aside the rationality postulate (read abandoning the 

maximisation techniques) opens up a crucial issue: while there is only one way of being 

fully rational, there are many ways of being less rational (Holland –Miller 1991), so 

how to model agents’ behaviour? The question is relevant both in the theoretical - that is 



to say how to choose the degree of rationality1 - and in methodological sense -how to 

describe the decision making process without equations- .  

 

In order to tackle complexity, economists have turned to the concept of adaptive agent 

and to the armoury of artificial intelligence. The hallmark of an adaptive agent is her 

ability to modify the patterns of action as to improve her probability of persisting in 

highly changeable environments; while artificial intelligence tools are roughly computer 

programs which search the problem space in order to find suitable (possibly optimal) 

solutions by using limited informational sets  and bounded ‘cognitive’ skills. 

In the last years, economics has witnessed an increasing diffusion of learning 

algorithms2. They are used mainly to replicate some observed regularity to conduct 

investigations of the “what if” kind and to find plausible individual motivations to 

sustain a given macro phenomena. However, we feel that such spread is taking place 

without a parallel development of the methodological issues related to the algorithmic 

choice: economic literature misses a frame to systematise the use of such instruments.  

 

As it appears from the opening citation, a crucial point is to fully understand the 

functioning of the algorithms and then to compare their behaviours to find out whether 

their outputs correspond or diverge. However, trying to test such robustness is not an 

easy task because those algorithms are different under very many respects. First, they 

rely on different, and somehow conflicting, theories of learning. Artificial Neural 

networks (hereafter NN) are based upon connectionism and the Artificial Intelligence 

Paradigm, while genetic algorithms (hereafter GA) and classifier systems (hereafter CS) 

are born within the Complex Adaptive System Paradigm and lean on an evolutionary 

idea of learning. Those differences result in algorithmic forms which are utterly 

dissimilar. A preliminary issue to deal with in order to shed some light on this topic is 

therefore that of the (technical) possibility and the (theoretical) opportunity of such a 

comparison. 

 

                                                 
1 Here rationality is defined as the appropriateness of means to pursue given ends. 
 
2 For an analysis of data concerning the diffusion of learning algorithms across the sub-disciplines of 
economics, see Fontana (2006). 



Second, having answered affirmatively to the previous questions, it comes to the matter 

of how to judge robustness. We are in need of a definition of equivalence of results that 

is able to allow comparison among the models. In addition to the notions of numerical, 

relational and distributional equivalence that have already been developed in literature 

(Axtell 1996), we suggest a two-stage concept of equivalence. The first stage, numerical 

identity, implies convergence on the (pretty) same solution. The second stage, 

procedural equivalence, requires similarity in the process of convergence, that is to say 

that the way in which the solution is found and the required time (in terms of run or 

steps) must be reasonably alike. We strongly believe that equivalence must be judged 

according to both outcome and process likeness since in the interpretation of economic 

phenomena from which learning algorithms stemmed puts a great emphasis on the paths 

that lead to given states of the world. To put it bluntly, who cares to know that an agent 

will make the best decision of all if it will take a billion of years to be computed? Or 

else, as long as we can think of the end of the learning process as an equilibrium (in the 

sense of a state of rest), we feel that the out of equilibrium behaviour is indeed an 

important part of the story. 

Third, we also appreciate algorithms according to the goodness of the result of their 

learning. In addition to the already developed criteria of effectiveness and efficiency, we 

propose to evaluate learning by taking into account graceful degradation, stability, and 

rapidity in order to increase knowledge of the functioning of the algorithms and 

improve the assessments of the results of their application. 

The present work also constitutes a foray in one the most debated issue concerning 

agent-based simulation, that of the difficulty in comparing models and replicating 

results. It is felt that “without such a process of close comparison, computational 

modelling will never provide the clear sense of “domain validity” that typically can be 

obtained for mathematised theories […] alignment is essential to support two hallmarks 

of cumulative disciplinary research: critical experiment and subsumption. If we cannot 

determine whether or not two models produce equivalent results in equivalent 

conditions, we cannot reject one model in favour of another that fits data better; nor we 

are able to say that one model is a special case of another more general one” (Axtell et 

al. 1996, p. 124).   



In what follows we describe an experimental setup in silico which allows for 

meaningful comparison of artificial agents and discusses some issues concerning the 

relevance of the codification of information in such algorithms. As we will show, the 

setup regards a simple problem with a known and certain result. The problem must be 

simple in order to facilitate the reading of results and the comprehension of the path to 

problem solving. The solution must be known in order to judge the goodness of the 

learning process without discussing the goodness of its outcome. In addition, we want 

the entire framework to be as simple as possible in obeisance to the principle that 

complexity arises from simple behaviour when interaction among agents is autonomous. 

In the following paragraphs the framework for simulations and the model are 

introduced, we then discuss the issues of comparability and propose a methodological 

frame to test for robustness of behaviour. Finally, some illustrative results are presented. 

 1.  The framework 

The simulation implements the traditional iterated Prisoner’s dilemma (hereafter IPD) 

by means of the agent-based modelling paradigm. It is, in spirit, very similar to the one 

proposed by Robert Axelrod in his 1997’s book The Complexity of Cooperation. As it is 

well known, the main result obtained by Axelrod in 1984 was the emergence of 

cooperation in two-person iterated prisoner’s dilemma under the condition of a 

sufficiently long horizon for repetition. He reached such result in an experimental setup 

in which he asked scientists and amateurs to submit strategies for a tournament whose 

rules where those of the PD.  In 1997, Axelrod decided to extend his previous work by 

using artificial adaptive agents (genetic algorithm) instead of human agents. He turned 

to simulation in order to explore the nonlinear effects deriving from interaction and to 

test robustness of his 1984’s results3. Our simulations take Axelrod experimental setting 

as a reference point and amends it order to observe and compare the performances of 

the algorithms. 

                                                 
3 In his words: “[…] having done two rounds of the tournament, I wondered  whether the  amount of  
cooperation I observed was due to prior expectations of the people who submitted the rules”  (Axelrod 
1997, p. 6). This statement is particularly interesting on the methodological stance. In fact, it represents an 
interesting route to bridge the gap between experiments conducted with human and artificial agents.  

 



In our opinion, the IPD meets the requirements of simplicity and certainty of outcomes 

set in the introduction. In fact, the only constraints on agents’ problem solving are the 

payoffs matrix and the rules of interaction. As for results, we expect the algorithms to 

discover patterns of mutual cooperation that perform at least as well as tit-for-tat to 

escape the sub-optimality of defection typical of one-shot PD. However, we also feel 

that the framework retains elements of richness that can sustain a wide span for the 

analysis. While the set of plausible outcomes is closed, (agents can only choose between 

cooperation or defection, the scope for composite strategies is extremely wide).  For 

instance, at the macro level, the basic strategies such as tit-for-tat, tit-for-2tat, cooperate 

or defect can emerge and endure or appear as temporary T-equilibria or follow each 

other in waves or cycles. Or else, at the micro level, in the history of a single agent they 

can show up in various combinations that change as adaptation take place. In addition, 

the game also present local optima in which the learning process can be locked in.  

Finally, the tournament design encompasses another argument stressed by complexity 

theorists: the profitability of a strategy cannot be computed in isolation. As pointed out 

by Arthur (1994) in the El Farol Bar problem, there is not an a priori best strategy (a 

true model of the world) but the fitness of strategy depends on what the others are 

doing. The agent (and her problem-solving device) is asked to elaborate a strategy that 

can do well in the environment provided all the other strategies. For example, ‘defect’ 

can be the better response in world of pure cooperators while can lead to a poor 

performance in a world of tit-for-tat players. 

1.1 The model 

The payoffs bi-matrix, which shows the same values as in Axelrod’s study, is the 

following: 

                         Player Row

Player Column 

Defect Cooperate

Defect 1,1  5,0 

Cooperate 0,5 3,3 

 



The interaction is organised by means of a double round robin tournament in which 

each player is paired with all the other members of the population. The latter is 

composed of agents with predetermined rules and of agents exploiting evolving rules. 

This allows for two kinds of tests. Firstly, to explore their properties learning algorithms 

are run in an environment in which variability is ‘controlled’ by having only one kind of 

learning process going on while all the other agents stick to a given rule. Secondly, 

when the learning process has been validated, evolutionary agents can play the one 

against the other. 

Agents with predetermined rules have an inborn strategy that is applied 

deterministically, irrespective of the opponent they are facing.  In more details, they are 

labelled as: 

i) Perpetual cooperator:  which always cooperates; 

ii) Perpetual defector: which always defects; 

iii) Noise player: which randomly picks a strategy; 

iv) Tit-for-tat (hereafter TfT): which starts with a cooperation and than always 

plays by reproducing the strategy encountered in the last interaction. 

v) Tit-for-2tat (hereafter TF2T): is a more tolerant player than TfT. It forgives 

the first defection before turning itself into a defector. 

Before describing the used kinds of adaptive agents few worlds must be spent in order 

to delimit our analysis. Adaptive agents are able to devise strategies that change in 

response to environmental variability. An important feature of artificial agents is that 

they have no a priori knowledge of the system, nor the researcher has to pre-constitute 

rules for them to work with. They develop behavioural patterns by learning out of their 

experience often starting from a set of random rules. The strength of such agents is not 

in their perfect knowledge or complete information rather it resides in that they can 

make meaningful decision independently of the degree of knowledge (even on the 

researcher side) of the problem to be solved. Moreover, they are able to generate novel 

behaviour. In practice, such agents are nothing but computational devices that perform 

in ways that we would be inclined to call intelligent4 and whose way of exploring the 

                                                 
4 These definitions rely on  Berkeley (1997).  



solution space recalls what, when referring to living beings, we call learning. They are 

the object of a field of research known as Artificial Intelligence (hereafter AI). Roughly, 

AI research has generated two streams: i) the strong AI paradigm which refers to the 

attempt of reproducing the actual functioning of the mind and the brain; ii) the weak AI 

paradigm that focuses on obtaining results that may - on an intuitive basis – be similar 

to those produced by human problem solving. Our work, as most of applications of AI 

to economics, is grounded in the weak paradigm: the emphasis is on modelling agents 

that are able to make decisions autonomously and creatively, leaving aside the actual 

resemblance between the algorithms and the mechanisms, that are largely unknown, 

ruling the formation and evolution of ideas in biological brains and in human minds. 

Rather, we share the fascination of the colleagues economists with artificial agents5 that 

has to do with the spread of the interpretation of the economic process in terms of 

complex adaptive systems. As sketched above, among the other implications, adhering 

to the complexity perspective amounts to renounce not only to the rationality postulate 

but, most importantly, to the mathematical tools of (dynamic) optimisation (Foster 

2005). In fact, such a technique only works when there is a known set of possible 

outcomes and known probabilities associated with each event. In economic systems 

such condition is not easily fulfilled: the future outcomes of action are partially 

foreseeable due to their inherent path-dependent character but, nevertheless they retain a 

high degree of uncertainty due to continuous adjustments of external (structure, 

connections, innovations in other agent’s behaviour) and internal (experience, imitation, 

creativity) environments. Artificial agents tend to substitute constrained optimisation 

techniques in complex environments and therefore they can be seen as general decision-

making devices (Markose 2005). In what follows, terms as ‘learning’ and ‘knowledge’ 

are used metaphorically. However, as it will be shown in the following discussion there 

is an important link between the functioning of the algorithm and the mind of the 

researcher. In fact, even the simplest situation can be framed and codified in a variety of 

ways that are likely to affect the algorithm performance. 

The analysis will concern the following artificial adaptive agents: 

                                                                                                                                               
 
5  See for instance Axelrod (1997). 
 



i) GAs (Holland 1975) are modelled on the processes of biological evolution. A genetic 

algorithm manipulates a set of structures called population. Structures are coded as 

strings of symbols drawn from some finite alphabet (often binary). For example, in our 

context a string is the list of strategies that the agent has played with each of the agents’ 

type. Each string his assigned value (fitness) on the basis of the result of its mediated or 

direct6 interaction with the environment. Genetic algorithm operates on the population 

by making copies of strings in proportion to the observed fitness. That is the fittest 

strings have a higher chance to be reproduced. While reproducing the strings the genetic 

algorithms trigger some genetic operator such as crossover that switches some of the 

characters of the strings and mutation that randomly varies some symbols of the string. 

It appears the artificial mind reproduced by a GA works with a selection mechanism 

that tends to adopt the action that has proven well in the past, however has a drift of 

creativity (introduced by the genetic operators) that generates new rules7. The result is a 

population of rules that adapt to the environment in an increasingly fit way. Adaptation 

operates at the group level, each evaluation regards the entire set of strings and therefore 

it permits to exploit the mutual information inherent in the population rather than simply 

exploit the best individual in it.  

 

 A CS is an adaptive, rule-based system that interacts with the environment by activating 

the appropriate set of rules. Each rule is in condition/action form and many rules can be 

active simultaneously. The condition part must be met by the environment for the action 

to be executed. However, the rule is not automatically acted. Rather, it enters a 

competition with other rules and is chosen according to its strength. A rule’s strength 

measures its past usefulness and is modified according to the system learning 

mechanism. A rule's strength is determined by means of a procedure of reward sharing 

known as bucket-brigade algorithm. The creation of new rules is done by discovery 

                                                 
6  This distinction refers to the specific use of the genetic algorithm. Interaction with the environment is 
direct when the GA embodies the agent, whereas is mediated when, as in our case, it represents the mind 
(read learning routine) of the agent. If this is the case, the GA proposes an action and the agent executes it 
in the environment. 
7 This often has been seen as metaphor for the innovation activity. While to some extent it may be so, the 
genetic operators have a precise technical role that of preventing the GA to be locked in sub optimal 
solutions.  
 



algorithm (often a genetic algorithm8) that tests new approaches in the environment. 

These two elements allow the CS to generate categories to classify the environment and 

progressively refine them according to experience.  

 

NNs aim at simulating on a very simplified scale the functioning of the brain: the 

elaboration units mimic the behaviour of neurons, while the connections among neuron 

symbolise dendrites, the weight of each connection determines the synapses behaviour. 

Technically a NN is composed by: 

1. units which are in communication with the external environment that are 

devoted to receive information from the outside (input nodes); 

2. units devoted to provide the behaviour of the agent (output nodes); 

3. units located in the so called hidden layers: their task is to mediate the 

transformation of information through non-linear elaboration. 

The reaction of a NN to the information received through input nodes depends on the 

weight of each of the connections: in modifying their weight, the network adapts its 

response and tunes the agent’s behaviour. Usually, in order to correctly calibrate such 

behaviour network must be trained: the weighting of connection takes place prior to the 

proposition of a given conduct. The modification of weight is made through a 

mechanism that aims at reducing the error: the so called back propagation technique.   

 

In the model, agents with artificial minds are paired with agent endowed with fixed 

rules whose features recall those emerged from Axelrod experiments. The objective of 

the agent, pursued through the various types of artificial minds, is to extract the 

maximum payoff from playing the IPD. Agents have limited information about the 

environment (they do not know the matrix of payoffs) and about the other members the 

population (they recognise the type of agent but cannot remember past interactions)9 

and the length of the game. Moreover they exhibit a sort of procedural rationality à la 

Simon in that their decision making process develops through rules of thumb that are 

tested against the environment. 

                                                 
8 The GA, in this case does not work as to converge on a optimal solution, it simply manipulates the 
population of rules. 
9 When there is only one instance of each kind of agent the information is more accurate. 



 

As for the observed variables, our focus is on cumulative payoff (computed after having 

played with all the agents in the tournament), path to the outcome (which is observed 

both graphically and numerically as number of required step to reach the outcome), and 

characteristics of the rules which are stored in the agent’s mind.  

 

2. Making the comparison 

As stressed in the introduction a preliminary issue to deal with is the theoretical 

opportunity and the technical possibility of such a comparison. On the theoretical 

ground, literature (Norvig etc) emphasises a number of important the differences. On 

the one side, the learning operated by GA and CC is known as reinforced learning as to 

stress the procedure of linking the probability of executing an action to its strength 

which in turn depends on past performances. While NN is said to use a form of 

supervised learning that is to say that it preliminarily needs some instances of 

phenomena to learn on without a proper return of rules in terms of fitness. However, as 

some authors report it is still possible to think of the process of adjusting weights as a 

reinforcement procedure.  Moreover, as long as we do not delve into the discussion 

regarding the extent to which artificial minds resemble the actual one we can neglect the 

difference in the models of learning underlying each adaptive agent.  

The technical opportunity of such a comparison depends on the possibility of changing 

the algorithms in order to smooth differences while preserving their original nature. The 

main structural differences are: the need of preliminary training for NNs, dependence on 

different inputs, sensitivity to the choice of a given fitness function. 

The above-cited distinctions between reinforcement and supervised learning, technically 

results in the fact that the GA and CS do not need a preliminary training: the selection 

of the structures based on their assessment is sufficient to promote the spread of the 

better rules. NNs instead require a training activity to tune their performance on the 

problem. This difficulty can be overcome by adopting the cross target method (Terna) 

that allows the network to assign a value to its single performance. This name comes 

from “the technique used to figure out targets in a class of models founded upon 

artificial adaptive agents whose main characteristic is developing some kind of internal 



consistency”10. It is a learning mechanism that produces guesses about both actions and 

their effects, on the basis of an information set. Actual effects are estimated through the 

guessed action and results are used to train the mechanism that guesses the effects. 

Actions that are necessary to match the guessed effects are, on the contrary, employed 

to train decision mechanism about actions. 

As for input data, NN and CS require an informational flow to describe the current 

condition under which they are asked to generate an action while GA does not need this 

kind of input: it generates rules internally and proposes them independently of any 

conditions. To nuance this difference, the evaluation of a single rule takes place at the 

end of each cycle of simulations, while in the other methods happens after each 

interaction. In GA the input condition does not trigger an action but simply determines 

the part of the rule (namely, which part of the string) that will be activated to induce 

action.  

 

For what concerns sensitivity, GAs and NNs are less affected by the way in which 

performance is measured. In fact, a GA evaluates all its structures in a non-cumulative 

way and prior to the learning and therefore changes in performance are likely to be 

smooth; NN operates as to reduce the distance between the target and the actual 

performance and therefore tends to restrict the span of the dominium of the objective 

function.  On the other hand, CS evolves rules on the basis of the accumulation of 

rewards obtained by each rule and thus rules that are less fit but have already a 

relatively high strength can persist in spite of the presence of more suitable rules that 

have a comparatively lower fitness value. For instance, this can happen for newborn 

rules of for rules they are generated from ‘poor’ parents and have inherited a low index 

of performance regardless of their effectiveness. This characteristic of CS is critical 

because may prevent it from fully exploiting the potential of the set rules and could lock 

it onto a local optimum.  

 

In its implementation, our framework is inspired to the strict separation between agents, 

cognitive endowment and rules to exploit it. This way of modelling allow for rigorous 

                                                 
10 Beltratti et al. (1996), p. 110.  
 



and controlled comparison between artificial minds since, it easy to ‘plug’ the agent 

with different learning algorithms (made of cognitive endowment and rules for its 

manipulation) leaving the rest of the simulation unchanged.  

 

In this first experiment, evaluation of goodness revolves on the numerical identity only. 

The performance is expressed as a numerical values obtained as the accumulation of the 

payoff obtained in the tournament by the rule suggested by the learning device. As we 

will discuss below, this kind of criterion can be used in very simple situation only. In 

future setting as the degree of complexity of the simulation increases, we will adopt 

different criteria.  

 

 The agenda for simulation is the following.  

• Individual IAAs that play against opponents with fixed rules; 

• Competition among learning algorithms; 

• Mixed scenario. 

 

The agenda aims at observing the behaviour and the properties of the learning device 

under a closed and very easily inspecting result as to stabilise and improve knowledge 

of their functioning and then apply then to more complex open-ended situations. 

This is an important part of the story, in fact in complex situations we cannot say 

whether the configuration that system has assumed is ‘correct’ in the same way we have 

computed that maximum payoff that an agent can extract from its fellow players since 

inherent unpredictability of non-linear interaction can produce configuration that we 

cannot compute or expect in advance. Our judgement of a system’s state and its being a 

plausible outcome of theoretical statements embedded into the simulation (and not a 

drift generated by a mistake in the program code or not an effect resulting from the 

application of a given learning algorithm to a problem that it is not very well equipped 

to solve) depend mainly of the degree of knowledge that we can master about the 

behaviour of the system units: the agent and its rules of adaptation. 

 

Criteria of Comparison  

In the introduction, we have pointed out that economics has not yet developed a 



literature on comparing and testing the behaviour of artificial minds. It therefore misses 

an established and shared set of criteria to draw on. In this paragraph, we list the criteria 

adopted in our simulation. Some of them  are our own doings  (procedural equivalence 

and its coupling with numerical identity) while other derive from pioneering works  of 

fellows economists (Axtell et al. 1996) and from neighbouring endeavours, mainly 

computer science. 

 

Robustness and Equivalence  

Obviously, the concept of robustness is related to the notion of equivalence. In fact the 

possibility to state that a result is (or is not) robust with respect to the algorithmic choice 

is subject to some underlying idea of  how to define likeness of results, that is to say a 

notion of equivalence. The question of determining whether equivalent results are 

produced in equivalent condition is by no means trivial as discussed in the outstanding 

research of Axtell and other (1996).  In our research, we will adopt the following 

criteria: 

-  Numerical identity that implies convergence of different runs on the same 

numerical value. This equivalence can be expected to hold only for very simple settings. 

Moreover, it is less likely to show in models containing stochastic and random 

elements. 

- Statistical (or distributional) equivalence: the models are said to be 

statistically equivalent when they produce several distributions of measurements 

that are statistically indistinguishable the ones from the others (Axelrod 1997, p. 

192). The statistical testing takes place through conventional non-parametric 

statistics (for instance, Mann-Whitney U statistics and Kolmogorov-Smirnov 

test). The problem is formulated as rejection of the null hypothesis of 

distributional identity at conventional confidence probabilities11.  

- Relational Equivalence, which embodies a looser standard with respect to 

statistical equivalence, implies that models produce the same internal 

                                                 
11 “The unsatisfactory part of this approach is that it creates an incentive for researcher to test 
equivalence with small sample sizes. The smaller the sample, the greater the chance of establishing 
equivalence” Axelrod (1997) p.194. 

 



relationship among their results (Axelrod 1991, p. 194). For instance, the model 

could show that the level of cooperation is a given – say quadratic – function of 

the number of players. 

- Procedural Equivalence, which implies similarities in the path to outcome. For 

instance, the solution is found following a linear or cyclical path. Procedural 

equivalence is a proxy of the way in which the algorithm explore the solution 

space. 

- Two stages-equivalence, which pairs numerical identity with procedural 

equivalence in order to test similarities in the path to outcome. This can be 

appreciated through graphical inspection. In our case, when two algorithms 

provide the same amount of payoffs comparison extends to their trend and to the 

dynamics, that has generated it. It can be appreciated graphically by 

superimposing the plots of payoff in time and statistically by comparing the 

values of payoffs in time. 

 

 

Goodness 

The use of the algorithms as to represent the problem solving activity of an agent in an 

economic model requires the assessment of the performance of the adopted methods. In 

complex systems where autonomous agent interact, the outcome of the process under 

study is often unknown and therefore its reliability must be grounded in the detailed 

knowledge of the learning processes rather than it the goodness of the outcome per se.   

We therefore take into account the following attributes of the learning process: 

1. Stability of strategies; 

2. Memory span, that is the ability to operate with a high number of strategies. 

3. Segregation of strategies, that is the ability to isolate strategies that are not currently 

applied. The ability to create such kind of speciation implies that an algorithm can 

satisfactorily face a given number of different events. 

4. Rielaboration, of unfit rules, that is the ability to quickly modify rules that become 

unfit due to changes occurred in the environment. 

5. Rapidity in recalling strategies that have not been used for a long time due to their 



ineffectiveness.  

6. Graceful degradation12 ability to cope with imperfect information. 

 

As we will show each of this features is present in the different algorithms in various 

degrees. This, as a first consideration, suggests that each methods has a given context of 

application. Moreover, knowing the performance of algorithms improve the 

understanding of the outcome of a simulation in which they are included. The 

simulation setup has been thought as to encompass all these criteria in order to extend 

comparison to effectiveness and efficiency of learning. 

 

The first scenario allows for testing the effectiveness of methods measured as a ratio of 

the better stable performance to the maximum performance - which in this closed 

formulation of the problem can be easily calculated13 due to the presence of agents with 

fixed rules. To avoid spurious data we are not using the Noise player and we will 

generate a single instance for each kind of agent. 

 

The predominance of a strategy would account for the ability to stick to the best strategy 

once found (criterion sub 1). While the ability to successfully face the agent with fixed 

rules will account for the memory span (criterion sub 2)  

 

In further scenarios, in addition to the Noise player, we will use more than one instance 

of each non-learning agents as to differentiate the number of predetermined behaviours 

in order to check for the ability to create species of strategies (criterion sub 3) to 

develop the ability to cope with various scenarios.  

 

Moreover, we will introduce the possibility for the agents to disguise their identity. That 

is to say that they switch their identity in order to confuse (read increase environmental 

changeability) the artificial mind that has to revise its ‘categorisation’ by elaborating  

the strategies that have suddenly turned to be inefficient (criteria sub 4). Furthermore, 

                                                 
12 Other criteria which are relevant from the technical viewpoint are simplicity in the coding of input data 
and output data;  facilità in interpreting and evaluating results. 
 
13 See appendix 1. 



its ability to correctly reconstruct its vision of the world in addition is a test for graceful 

degradation (criteria sub 6). 

 

By controlling the changes in the identity of agents, the artificial mind will be 

periodically faced with already experimented environmental conditions. The ability to 

rapidly recall strategies that have been effective in the past will account for criteria sub 

5.  

 

Besides the performances of each algorithm taken singularly, comparison across 

algorithms in the light of these criteria will allow for an assessment of their relative 

effectiveness. In addition, comparison of time necessary to perform tasks under the 

different settings will reveal their efficiency. 

 
Preliminary results 
 
As a first step, we have conducted a set of runs to validate the framework. In details: 

1. separate introduction of agent with fixed rules in order to check the correspondence 

with the theoretical framework. This has implied calculation of payoff and observation 

of played strategies; 

2. functioning of the round robin tournament and of the random pairing of agents; 

3. check for the statistical neutrality of the introduction of the Noise agent, which action 

are determined by a pseudo random uniform distribution. 

 

The first set of runs has concerned a genetic algorithm. This kind of simulation has 

permitted to highlight the sensitivity of optimal results to the codification of knowledge. 

This raises a very important question: independently of the internal functioning of the 

algorithm there is an eliminable ‘subjective’ element (the way in which the investigator 

choose to convey information into the algorithm) that, ceteris paribus, can produce 

results that diverge sensibly. In our setting, under some codifications of knowledge the 

GA was unable to discover the optimal strategy. 

 



Three kinds of codifications have been compared: technically, they consist in different 

algorithms charged with the interpretation of the strings of value that in turn represent 

the rules of the GA.  We have also modified the length of strings.  

 

Common elements in all the experiments have been: 

• Alphabet: each symbol in the string represents an action to execute, 1 or 0 to 

represent cooperate or defect respectively. 

• Fitness: of each rule is given by the sum of the payoffs earned by the agent in 

a double round robin tournament. 

• Agents’ type revealed by a characteristic number14  

Whereas codification has been changed in the following ways:   

• Strings of 16 values. The action to activate (correspondent with a position of the 

string) was determined according to the number passed by the opponent. This 

consisted in the history of the previous four encounters with the same agent15.  

• Pairing of strategies: instead of considering the strategies adopted in the past by 

the opponent the second experiment has taken into account two pairs of 

strategies composed by the action adopted in the last two encounters by the GA 

and the opponent. 

• Last shot: the GA could memorise only the last action it has executed with a 

given opponent.  This implied a string of 8 positions (four agents excluding the 

GA and two possible strategies for each kind of agent). 

  

Only in the third case, the agent has been able to meet the above quoted requirements. 

In the other two optimal strategies where discovered only with some type of agent and 

were not stable in the presence of a variety of types.  This amounts to say that the GA 

was unable to develop strategy apt to cope with different situations. In the first 

codification, the GA was able to discover the best strategy only when he faced a kind of 

agent at the time. The ineffectiveness of the learning has to be ascribed to the ambiguity 

                                                 
14 0 means Perpetual Cooperator, 1 means Perpetual Defector, 2  tit- for- tat, 3 means  tit- for- two -tat, 4 
Noise Player (not used here) and 5 means GA. When the simulation is run with a single instance of each 
kind of agent the type coincides with the identity of the agent.  
 
15  Disposition with repetition of two elements (cooperate or defect) gives 16. 
 



emerging from the codification of information: when paired with a Tf2t information 

regarding the two last actions made impossible for the GA to distinguish it from a Tft.  

Moreover, when the GA learned to cooperate with a Tft the history of their interactions 

was equal to the that of the Perpetual cooperator. This could cause the GA to: 

• Systematically defect the Tft  and the Perpetual cooperator with a payoff di 

1216 

• Systematically cooperate with the Tft  and the Perpetual cooperator with a 

payoff di 1217   

 

Since the payoff obtained from the two strategies is identical, it was impossible for the 

GA to distinguish the two strategies preserving their plurality. Since the history was the 

same for the two kinds of agent, the same position of the string was used to determine 

the strategy to employ to interact with both a Perpetual Cooperator and a Tft. When by 

mistake the GA converged on defect with a Tft, a similar ambiguity aroused with the 

Perpetual defector since both exhibited a story of defections. 

 

The second solution, in our intention, should have solved the problem of distinguishing 

Tft from Tf2t however it still admitted several ambiguities (for instance, in an history of 

the kind GA cooperates, Tf2t cooperates, GA defects, Tf2t cooperate will still be not 

distinguishable from the sequence with a Perpetual Cooperator). In both cases, the 

algorithm had difficulties in reaching stable patterns. 

  

The effective codification has been found by making the agents declare their type. This 

was the only way for it to develop univocal strategies. It is worth stressing that the 

‘mistake’ was not in the functioning of the algorithm but in the way it was asked to 

process information. It follows that the criterion sub 6 is only partially fulfilled by the 

GA. 

  

A further consideration concerns the evaluation of the rules of the GA’s population. The 

presence of different rules with the same evaluation can significantly reduce the 
                                                 
16 1 + 1 + 5 + 5 = 12 

 
17 3 + 3 + 3 + 3 = 12 



method’s performance. Another interesting point is that, at least in this setting, the 

adaptive strategy performs better than the Tft the traditional winner of the Axelrod’s 

tournaments.  

 

Moreover, we have run computation in order to appreciate:  

• Robustness of methods 

• Stability: measured as the average payoff over 10000 tournaments after having 

found the best strategy. 

•  Effectiveness measured as the amount of cumulative payoff gained in 100 

tournaments.  

• Memory span measured has the ability to discover the best possible strategy to play 

with each kind of agent. 

• Efficiency measured as the number of tournaments necessary to reach the optimal 

solution. 

   

In what follows, we report the results of a series of experiments of 10000 tournaments 

with a GA and one instance of each agent except for the Noise Player with a 

codification of knowledge ‘last shot’.  

For the given rules of interaction and the matrix of payoffs, the best possible 

performance for the GA was a payoff of 26 for each tournament (See appendix 1). From 

the point of view of game theory, it might be worth noting that such payoff implies a 

free ride on the cooperation of the other agents. Moreover, this payoff is higher than that 

obtained from the tit-for-tat strategy.  

 

 

The following table reports the values referred to the performance for the GA.  The first 

column show the number of tournaments necessary to reach the maximum payoff, the 

second one the average (per step) performance after having reached the optimum. In the 

distribution, we have not included two experiments in which the GA had failed to reach 

the optimum in order to compute the average. The table with detailed data is available in 

appendix 2. 

 



Number of Tournaments Data type Steps to optimum Average Performance  

52 Average 3450 25,58 

52 Variance 360000 0,01 

   

From the table we can draw some tentative conclusions. In details:  

1. General effectiveness of the GA is confirmed by its ability to locate the optimal 

solution in almost all the simulations. 

2. The variance of the distribution of the number of steps necessary to reach the 

equilibrium suggests a link between efficiency in computation and distribution 

of the pseudo random numbers.  

3. The variance of the average results after having located the optimum witnesses 

for a substantial stability of strategies. Stability is attained in spite of the fact that 

the learning mechanism remains in action as shown by the small variation due to 

the genetic operator Mutation. 

4. The GA has been able to face four types of different agents also exhibiting 

articulated behaviours such as Tf2t. It therefore can be said to have passed a first 

memory test (criteria sub 2).  

 

The experimental setup will also include run with the Noise player which has the role of 

perturbing the learning process. The expected result is that the GA would express 

towards the Noise player a strategy of continuous defection as to limit the losses. In fact 

the Noise player is not as revengeful as the Tft and defecting with him would grant a 

payoff of 5 in about the half of cases in the rest of the cases it would have earned 1 (an 

average payoff of 3 per interaction which outperform all mixed strategies.  

 

 

Concluding remarks   

In the present work, introduce an experimental setup to compare different artificial 

minds. As the AI tools find a steady employment in economics, the necessity of this 

kind of analyses becomes compelling.  On the one hand, we have shown that in spite of 

the simplicity of the problem that the GA was required to solve we have remarked a 



high sensitivity of results to the way the relevant information was codified by the 

researcher.  

This should warn us on different aspects of the attempts to deal with complexity. 

Intelligent artificial agents constitute an advance in exploring complex adaptive systems 

when the knowledge of the system is only partial and when the researcher cannot –

through a traditional mental experiment – acquire it in more details, or when the 

traditional deductive methods fail to help because of their inapplicability. 

However, their sensitivity to codification replicates and somehow magnifies the issue of 

subjectivity in human perception. The modeller codify its vision of world in the 

artificial agent without being able to foresee how it will developed and amend in the 

simulation. The issue is not trivial. When the final state of a complex system is not 

known (as usually is) to what extent can we trust the solution found by an artificial 

mind? Would another algorithm embedding a different codification or a different set of 

focal points converge on the same solution?  

More generally how sensitive are the results of economic models to the choice of a 

given algorithm and to its application to a given instance of problem solving? 

In the light of this question, we feel that our analysis can be helpful in clarifying which 

are the crucial points to take into consideration while engaging in such exercise and the 

criteria to be use when trying to evaluate our models. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
Appendix 1: arithmetical derivation of the maximum payoff (26) 
 
 
In a run without Noise player in a double round robin tournament the best set of 
strategies is : 
 
• Always defecting with Perpetual Cooperator gives  5 +5 

• Always defecting with a Perpetual Defector gives 1+1 

• Always cooperating with Tft gives 3+3 

• Alternate defect and cooperate with Tf2  gives 5+3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 2: Sensitivity analysis to random seed generator for average payoffs 

The tables show in details the data summarised in the text. The analysis has been 

conducted by changing the seed of the random number generator while keeping all the 

rest of the setup unvaried. 

 

Steps Average Payoff
3002 25,631556 
4502 25,517191 
3702 25,565507 
3502 25,584731 
4202 25,552182 
4302 23,192557 
3202 25,601295 
3602 25,597311 
3602 25,595435 
2702 25,58065 
3802 25,586574 
2402 25,614058 
3802 25,535259 
3802 25,535582 
3302 25,608183 
2802 25,637349 
2502 25,650527 
4202 25,547697 
2602 25,597134 
3902 25,556175 
3702 25,592822 
3202 25,543916 
5002 25,485291 
4102 25,520773 
4202 25,555977 
2702 25,644237 
3102 25,562128 
3702 25,591869 
3602 25,598874 
3202 25,578049 
4302 25,541162 
4302 25,480428 
3102 25,626794 
3602 25,59481 
3802 25,58722 
3002 25,632128 
3002 25,628412 
2602 25,650128 
2202 25,67013 
3302 25,512618 



3102 25,623894 
3402 25,608004 
3402 25,571927 
3502 25,558258 
3402 25,579203 
4502 25,522285 
3302 25,595938 
2702 25,648075 
2302 25,663765 
2902 21,939411 
3502 25,582269 
4202 25,528722 

Average 3450 25,580139 
Variance 

360000 
0,002643708 
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